Suppr超能文献

基于Burrows-Wheeler变换和线性预测反演秩的心电图信号压缩

ECG signal compression based on Burrows-Wheeler transformation and inversion ranks of linear prediction.

作者信息

Arnavut Ziya

机构信息

Department of Computer Science, SUNY Fredonia, Fredonia, NY 14063, USA.

出版信息

IEEE Trans Biomed Eng. 2007 Mar;54(3):410-8. doi: 10.1109/TBME.2006.888820.

Abstract

Many transform-based compression techniques, such as Fourier, Walsh, Karhunen-Loeve (KL), wavelet, and discrete cosine transform (DCT), have been investigated and devised for electrocardiogram (ECG) signal compression. However, the recently introduced Burrows-Wheeler Transformation has not been completely investigated. In this paper, we investigate the lossless compression of ECG signals. We show that when compressing ECG signals, utilization of linear prediction, Burrows-Wheeler Transformation, and inversion ranks yield better compression gain in terms of weighted average bit per sample than recently proposed ECG-specific coders. Not only does our proposed technique yield better compression than ECG-specific compressors, it also has a major advantage: with a small modification, the proposed technique may be used as a universal coder.

摘要

许多基于变换的压缩技术,如傅里叶变换、沃尔什变换、卡尔胡宁-洛伊夫变换(KL变换)、小波变换和离散余弦变换(DCT),已被研究并设计用于心电图(ECG)信号压缩。然而,最近引入的布罗克斯-惠勒变换尚未得到充分研究。在本文中,我们研究了ECG信号的无损压缩。我们表明,在压缩ECG信号时,与最近提出的特定于ECG的编码器相比,利用线性预测、布罗克斯-惠勒变换和反转秩在每样本加权平均比特方面能产生更好的压缩增益。我们提出的技术不仅比特定于ECG的压缩器具有更好的压缩效果,还具有一个主要优点:只需进行微小修改,该技术就可以用作通用编码器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验