Tran Y, Wijesuryia N, Thuraisingham R A, Craig A, Nguyen H T
Key University Research Centre in Health Technologies, University of Technology, Sydney, Australia.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1096-9. doi: 10.1109/IEMBS.2008.4649351.
Driver fatigue is a prevalent problem and a major risk for road safety accounting for approximately 20-40% of all motor vehicle accidents. One strategy to prevent fatigue related accidents is through the use of countermeasure devices. Research on countermeasure devices has focused on methods that detect physiological changes from fatigue, with the fast temporal resolution from brain signals, using the electroencephalogram (EEG) held as a promising technique. This paper presents the results of nonlinear analysis using sample entropy and second-order difference plots quantified by central tendency measure (CTM) on alert and fatigue EEG signals from a driving simulated task. Results show that both sample entropy and second-order difference plots significantly increases the regularity and decreases the variability of EEG signals from an alert to a fatigue state.
驾驶员疲劳是一个普遍存在的问题,也是道路安全的主要风险因素,约占所有机动车事故的20%-40%。预防与疲劳相关事故的一种策略是使用对策装置。对策装置的研究集中在检测因疲劳引起的生理变化的方法上,由于脑电信号具有快速的时间分辨率,因此脑电图(EEG)被认为是一种很有前景的技术。本文展示了使用样本熵和二阶差分图进行非线性分析的结果,这些结果通过集中趋势测量(CTM)对来自驾驶模拟任务的警觉和疲劳脑电信号进行量化。结果表明,样本熵和二阶差分图都显著提高了脑电信号从警觉状态到疲劳状态的规律性,并降低了其变异性。