Suppr超能文献

基于 EEG 信号的多重有限穿透水平可视性图的驾驶员疲劳检测

Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue Detection.

机构信息

* School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China.

† Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK.

出版信息

Int J Neural Syst. 2019 Jun;29(5):1850057. doi: 10.1142/S0129065718500570. Epub 2018 Dec 9.

Abstract

Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a great deal of attention on account of its significant importance. Numerous methods have been proposed to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large extent, remains to be investigated. To address this problem, we, in this work, develop a novel Multiplex Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows in not only detecting fatigue driving but also probing into the brain fatigue behavior. Importantly, we use the method to construct brain networks from EEG signals recorded from different subjects performing simulated driving tasks under alert and fatigue driving states. We then employ clustering coefficient, global efficiency and characteristic path length to characterize the topological structure of the networks generated from different brain states. In addition, we combine average edge overlap with the network measures to distinguish alert and mental fatigue states. The high-accurate classification results clearly demonstrate and validate the efficacy of our multiplex LPHVG method for the fatigue detection from EEG signals. Furthermore, our findings show a significant increase of the clustering coefficient as the brain evolves from alert state to mental fatigue state, which yields novel insights into the brain behavior associated with fatigue driving.

摘要

驾驶员疲劳是道路交通事故的一个重要原因,因此驾驶员疲劳检测受到了极大的关注。尽管已经提出了许多方法来完成这一具有挑战性的任务,但疲劳机制的特征在很大程度上仍有待研究。为了解决这个问题,我们在这项工作中开发了一种新的多路受限可穿透水平可见度图(Multiplex LPHVG)方法,该方法不仅可以检测疲劳驾驶,还可以探测大脑疲劳行为。重要的是,我们使用该方法从不同受试者在警觉和疲劳驾驶状态下执行模拟驾驶任务时记录的 EEG 信号构建大脑网络。然后,我们使用聚类系数、全局效率和特征路径长度来描述来自不同大脑状态的网络的拓扑结构。此外,我们结合平均边缘重叠和网络测量来区分警觉和精神疲劳状态。高精度的分类结果清楚地证明和验证了我们的多路受限可穿透水平可见度图方法从 EEG 信号中检测疲劳的有效性。此外,我们的研究结果表明,随着大脑从警觉状态向精神疲劳状态的发展,聚类系数显著增加,这为与疲劳驾驶相关的大脑行为提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验