Richa Rogerio, Bo Antonio P L, Poignet Philippe
LIRMM - UMR CNRS - UM, Montpellier - France.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3261-4. doi: 10.1109/IEMBS.2008.4649900.
In the past few years, several research groups have worked on the design of efficient motion compensation systems for cardiac robotic-assisted Minimally Invasive Surgery (MIS). By providing surgeons with a stabilized work environment, significant improvements of the precision and repeatability of their gestures can be achieved. The design of a motion compensation system requires the accurate measurement of the heart motion, which can be achieved using computer vision techniques for tracking cardiac structures on the heart surface. However, most works in the literature focus on the representation and localization of cardiac structures while few explore their motion dynamics. In this paper we study and implement different adaptive methods for predicting the future heart motion using Kalman filtering. By exploiting the quasi-periodic nature of the heart motion, we are able to increase tracking robustness and computational efficiency. The experimental results indicate the significant increase in tracking performance when heart motion prediction is employed.
在过去几年中,几个研究小组致力于为心脏机器人辅助微创手术(MIS)设计高效的运动补偿系统。通过为外科医生提供稳定的工作环境,可以显著提高他们手势的精度和可重复性。运动补偿系统的设计需要精确测量心脏运动,这可以通过使用计算机视觉技术跟踪心脏表面的心脏结构来实现。然而,文献中的大多数工作都集中在心脏结构的表示和定位上,很少有人探索其运动动力学。在本文中,我们研究并实现了使用卡尔曼滤波预测未来心脏运动的不同自适应方法。通过利用心脏运动的准周期性,我们能够提高跟踪的鲁棒性和计算效率。实验结果表明,采用心脏运动预测时跟踪性能有显著提高。