Tuna E Erdem, Franke Timothy J, Bebek Ozkan, Shiose Akira, Fukamachi Kiyotaka, Cavuşoğlu M Cenk
Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA.
IEEE Trans Robot. 2013 Feb 1;29(1):261-276. doi: 10.1109/TRO.2012.2217676.
Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating heart without stabilizers as if the heart is stationary. The robot actively cancels heart motion by closely following a point of interest (POI) on the heart surface-a process called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the POI motion, it is necessary to supply the controller with an estimate of the immediate future of the POI motion over a prediction horizon in order to achieve sufficient tracking accuracy. In this paper, two least-square based prediction algorithms, using an adaptive filter to generate future position estimates, are implemented and studied. The first method assumes a linear system relation between the consecutive samples in the prediction horizon. On the contrary, the second method performs this parametrization independently for each point over the whole the horizon. The effects of predictor parameters and variations in heart rate on tracking performance are studied with constant and varying heart rate data. The predictors are evaluated using a 3 degrees of freedom test-bed and prerecorded - motion data. Then, the one-step prediction and tracking performances of the presented approaches are compared with an Extended Kalman Filter predictor. Finally, the essential features of the proposed prediction algorithms are summarized.
机器人辅助心脏跳动手术旨在让外科医生在不使用稳定器的情况下对跳动的心脏进行手术,就好像心脏是静止的一样。该机器人通过紧密跟踪心脏表面的一个兴趣点(POI)来主动消除心脏运动,这一过程称为主动相对运动消除(ARMC)。由于POI运动的高带宽,为了实现足够的跟踪精度,有必要在预测时域内向控制器提供POI运动的近期未来估计。在本文中,实现并研究了两种基于最小二乘法的预测算法,它们使用自适应滤波器生成未来位置估计。第一种方法假设预测时域内连续样本之间存在线性系统关系。相反,第二种方法在整个时域内对每个点独立进行这种参数化。利用恒定和变化的心率数据研究了预测器参数和心率变化对跟踪性能的影响。使用三自由度试验台和预先记录的运动数据对预测器进行评估。然后,将所提出方法的一步预测和跟踪性能与扩展卡尔曼滤波器预测器进行比较。最后,总结了所提出预测算法的基本特征。