Patel Shyamal, Hughes Richard, Huggins Nancy, Standaert David, Growdon John, Dy Jennifer, Bonato Paolo
Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3686-9. doi: 10.1109/IEMBS.2008.4650009.
This paper is focused on the analysis of data obtained from wearable sensors in patients with Parkinson's Disease. We implemented Support Vector Machines (SVM's) to predict clinical scores of the severity of Parkinsonian symptoms and motor complications. We determined the optimal window length to extract features from the sensor data. Furthermore, we performed tests to determine optimal parameters for the SVM's. Finally, we analyzed how well individual tasks performed by patients captured the severity of various symptoms and motor complications.
本文专注于分析从帕金森病患者的可穿戴传感器获取的数据。我们采用支持向量机(SVM)来预测帕金森症状严重程度和运动并发症的临床评分。我们确定了从传感器数据中提取特征的最佳窗口长度。此外,我们进行了测试以确定支持向量机的最佳参数。最后,我们分析了患者执行的各个任务在反映各种症状和运动并发症严重程度方面的表现。