Suppr超能文献

使用可穿戴传感器预测晚期帕金森病的症状严重程度和运动并发症。

Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson's Disease.

作者信息

Patel Shyamal, Hughes Richard, Huggins Nancy, Standaert David, Growdon John, Dy Jennifer, Bonato Paolo

机构信息

Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3686-9. doi: 10.1109/IEMBS.2008.4650009.

Abstract

This paper is focused on the analysis of data obtained from wearable sensors in patients with Parkinson's Disease. We implemented Support Vector Machines (SVM's) to predict clinical scores of the severity of Parkinsonian symptoms and motor complications. We determined the optimal window length to extract features from the sensor data. Furthermore, we performed tests to determine optimal parameters for the SVM's. Finally, we analyzed how well individual tasks performed by patients captured the severity of various symptoms and motor complications.

摘要

本文专注于分析从帕金森病患者的可穿戴传感器获取的数据。我们采用支持向量机(SVM)来预测帕金森症状严重程度和运动并发症的临床评分。我们确定了从传感器数据中提取特征的最佳窗口长度。此外,我们进行了测试以确定支持向量机的最佳参数。最后,我们分析了患者执行的各个任务在反映各种症状和运动并发症严重程度方面的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验