Suppr超能文献

借助可穿戴传感器,从离线活动识别迈向在线活动识别。

Advancing from offline to online activity recognition with wearable sensors.

作者信息

Ermes Miikka, Parkka Juha, Cluitmans Luc

机构信息

VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101, Tampere, Finland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4451-4. doi: 10.1109/IEMBS.2008.4650199.

Abstract

Activity recognition with wearable sensors could motivate people to perform a variety of different sports and other physical exercises. We have earlier developed algorithms for offline analysis of activity data collected with wearable sensors. In this paper, we present our current progress in advancing the platform for the existing algorithms to an online version, onto a PDA. Acceleration data are obtained from wireless motion bands which send the 3D raw acceleration signals via a Bluetooth link to the PDA which then performs the data collection, feature extraction and activity classification. As a proof-of-concept, the online activity system was tested with three subjects. All of them performed at least 5 minutes of each of the following activities: lying, sitting, standing, walking, running and cycling with an exercise bike. The average second-by-second classification accuracies for the subjects were 99%, 97%, and 82 %. These results suggest that earlier developed offline analysis methods for the acceleration data obtained from wearable sensors can be successfully implemented in an online activity recognition application.

摘要

利用可穿戴传感器进行活动识别可以激励人们进行各种不同的运动和其他体育锻炼。我们之前已经开发了用于对可穿戴传感器收集的活动数据进行离线分析的算法。在本文中,我们展示了将现有算法的平台推进到在线版本并移植到个人数字助理(PDA)上的当前进展。加速度数据从无线运动手环获取,这些手环通过蓝牙链路将3D原始加速度信号发送到PDA,然后由PDA进行数据收集、特征提取和活动分类。作为概念验证,在线活动系统对三名受试者进行了测试。他们所有人都对以下每项活动至少进行了5分钟:躺卧、坐着、站立、行走、跑步以及使用健身自行车骑行。受试者的平均逐秒分类准确率分别为99%、97%和82%。这些结果表明,之前开发的用于对从可穿戴传感器获得的加速度数据进行离线分析的方法可以成功应用于在线活动识别应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验