在物理生活日志活动检测系统中,对加速度计和陀螺仪测量的研究。

A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems.

机构信息

Department of Computer Science, Air University, Islamabad 44000, Pakistan.

Department of Human-Computer Interaction, Hanyang University, Ansan 15588, Korea.

出版信息

Sensors (Basel). 2020 Nov 21;20(22):6670. doi: 10.3390/s20226670.

Abstract

Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life environments. The purpose of this paper is to report on recent developments and to project future advances regarding wearable sensor systems for the sustainable monitoring and recording of human life-logs. On the basis of this survey, we propose a model that is designed to retrieve better information during physical activities in indoor and outdoor environments in order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical and non-statistical features for the recognition of different activity patterns using wearable inertial sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal magnitude, positive/negative peaks and position direction to explore signal orientation changes, position differentiation, temporal variation and optimal changes among coordinates. These features are processed by a genetic algorithm for the selection and classification of inertial signals to learn and recognize abnormal human movement. Our model was experimentally evaluated on four benchmark datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show that the proposed feature extraction strategy outperformed others, achieving an improved recognition accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and SMotion datasets were applied.

摘要

如今,可穿戴技术可以通过将目标从单纯的计步转变为解决重大医疗保健挑战,来提升人体的日常生活记录。这种可穿戴技术模块为获取有关人类在现实环境中活动的重要信息提供了机会。本文旨在报告可穿戴传感器系统在可持续监测和记录人类生活日志方面的最新进展,并预测未来的发展。在此基础上,我们提出了一种模型,旨在从室内和室外环境中的身体活动中检索更好的信息,以提高生活质量并降低风险。该模型使用融合统计和非统计特征的方法,使用三轴加速度计、陀螺仪和磁力计等可穿戴惯性传感器识别不同的活动模式。这些特征包括信号幅度、正负峰值和位置方向,以探索信号方向变化、位置差异、时间变化和坐标之间的最优变化。这些特征通过遗传算法进行处理,用于选择和分类惯性信号,以学习和识别异常的人体运动。我们的模型在四个基准数据集上进行了实验评估:智能媒体可穿戴智能家居活动(IM-WSHA)、自我注释的身体活动数据集、来自 IM-SB 数据集的不同运动模式的无线传感器数据挖掘(WISDM)和不同身体活动的 SMotion 数据集。实验结果表明,所提出的特征提取策略在应用 IM-WSHA、WISDM、IM-SB 和 SMotion 数据集时,分别实现了 81.92%、95.37%、90.17%和 94.58%的识别精度提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dce3/7700540/2e983b14af57/sensors-20-06670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索