Czajkowska Joanna, Rudzki Marcin, Czajkowski Zbigniew
Department of Biomedical Engineering, Silesian University of Technology, Gliwice, Poland.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4676-9. doi: 10.1109/IEMBS.2008.4650256.
In this paper a new approach to a fuzzy support vector machine (FSVM) for solving multi-class problems is presented. The developed algorithm combines two separate methods based on fuzzy support vector machine, one for solving two-class problems and the second for multi-class problems. The first method deals with the problem of selecting the best support vector machine (SVM) kernel function and the second method enables classification of unclassified regions that appear when classical SVM methods for solving multi-class problems are used. Presented tool has been subjected to the dataset from Kent Ridge Biomedical Data Set Repository and showed its superiority comparing with conventional SVM and FSVM methods.
本文提出了一种用于解决多类问题的模糊支持向量机(FSVM)的新方法。所开发的算法结合了基于模糊支持向量机的两种不同方法,一种用于解决两类问题,另一种用于解决多类问题。第一种方法处理选择最佳支持向量机(SVM)核函数的问题,第二种方法能够对使用经典SVM方法解决多类问题时出现的未分类区域进行分类。所展示的工具已应用于肯特岭生物医学数据集存储库中的数据集,并与传统SVM和FSVM方法相比显示出其优越性。