Yan Hong-Sen, Xu Duo
Research Institute of Automation, Southeast University, Nanjing 210096, China.
IEEE Trans Neural Netw. 2007 May;18(3):721-31. doi: 10.1109/TNN.2007.894080.
This paper presents a new version of fuzzy support vector machine (FSVM) developed for product design time estimation. As there exist problems of finite samples and uncertain data in the estimation, the input and output variables are described as fuzzy numbers, with the metric on fuzzy number space defined. Then, the fuzzy v-support vector machine (Fv-SVM) is proposed on the basis of combining the fuzzy theory with the v-support vector machine, followed by the presentation of a time estimation method based on Fv-SVM and its relevant parameter-choosing algorithm. The results from the applications in injection mold design and software product design confirm the feasibility and validity of the estimation method. Compared with the fuzzy neural network (FNN) model, our Fv-SVM method requires fewer samples and enjoys higher estimating precision.
本文提出了一种为产品设计时间估计而开发的新型模糊支持向量机(FSVM)。由于在估计中存在有限样本和不确定数据的问题,将输入和输出变量描述为模糊数,并定义了模糊数空间上的度量。然后,在将模糊理论与v支持向量机相结合的基础上提出了模糊v支持向量机(Fv-SVM),接着给出了基于Fv-SVM的时间估计方法及其相关的参数选择算法。注塑模具设计和软件产品设计中的应用结果证实了该估计方法的可行性和有效性。与模糊神经网络(FNN)模型相比,我们的Fv-SVM方法所需样本更少,估计精度更高。