Suppr超能文献

运动皮层活动的压缩感知对脑机接口中尖峰序列解码的影响。

Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces.

作者信息

Aghagolzadeh Mehdi, Shetliffe Michael, Oweiss Karim G

机构信息

ECE Dept at Michigan State University, East Lansing, MI 48824, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5302-5. doi: 10.1109/IEMBS.2008.4650411.

Abstract

Decoding spike trains is an essential step to translate multiple single unit activity to useful control commands in cortically controlled Brain Machine Interface (BMI) systems. Extracting the spike trains of individual neurons from the recorded mixtures requires spike sorting, a computationally prohibitive step that precludes the development of fully implantable, small size and low power electronics. Previously, we reported on the ability to extract the critical information in these spike trains such as precise spike timing and firing rate of individual neurons using a compressed sensing strategy that overcomes the computational burden of the spike sorting step. Herein, we assess the decoding performance using this method and compare it to the case where classical spike sorting takes place prior to decoding. We use the local average of the sparsely represented data as discriminative features to 'informally' detect and classify spikes in the data stream. We demonstrate that there is a substantial gain in performance assessed under different decoding strategies, while much less computations are needed compared to spike sorting in the traditional sense.

摘要

对脉冲序列进行解码是在皮层控制的脑机接口(BMI)系统中将多个单神经元活动转化为有用控制命令的关键步骤。从记录的混合信号中提取单个神经元的脉冲序列需要进行脉冲排序,这是一个计算量极大的步骤,阻碍了完全可植入、小尺寸和低功耗电子设备的发展。此前,我们报道了利用压缩感知策略提取这些脉冲序列中的关键信息的能力,比如单个神经元的精确脉冲时间和放电率,该策略克服了脉冲排序步骤的计算负担。在此,我们评估使用这种方法的解码性能,并将其与在解码之前进行传统脉冲排序的情况进行比较。我们将稀疏表示数据的局部平均值用作判别特征,以“非正式地”检测和分类数据流中的脉冲。我们证明,在不同解码策略下评估的性能有显著提升,同时与传统意义上的脉冲排序相比,所需的计算量要少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验