Suppr超能文献

无需峰电位分类的峰电位序列解码

Spike train decoding without spike sorting.

作者信息

Ventura Valérie

机构信息

Department of Statistics and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

出版信息

Neural Comput. 2008 Apr;20(4):923-63. doi: 10.1162/neco.2008.02-07-478.

Abstract

We propose a novel paradigm for spike train decoding, which avoids entirely spike sorting based on waveform measurements. This paradigm directly uses the spike train collected at recording electrodes from thresholding the bandpassed voltage signal. Our approach is a paradigm, not an algorithm, since it can be used with any of the current decoding algorithms, such as population vector or likelihood-based algorithms. Based on analytical results and an extensive simulation study, we show that our paradigm is comparable to, and sometimes more efficient than, the traditional approach based on well-isolated neurons and that it remains efficient even when all electrodes are severely corrupted by noise, a situation that would render spike sorting particularly difficult. Our paradigm will also save time and computational effort, both of which are crucially important for successful operation of real-time brain-machine interfaces. Indeed, in place of the lengthy spike-sorting task of the traditional approach, it involves an exact expectation EM algorithm that is fast enough that it could also be left to run during decoding to capture potential slow changes in the states of the neurons.

摘要

我们提出了一种用于尖峰序列解码的新范式,它完全避免了基于波形测量的尖峰分类。该范式直接使用通过对带通电压信号进行阈值处理而在记录电极上收集到的尖峰序列。我们的方法是一种范式,而非算法,因为它可与任何当前的解码算法一起使用,比如群体向量或基于似然性的算法。基于分析结果和广泛的模拟研究,我们表明我们的范式与基于良好分离神经元的传统方法相当,并且有时效率更高,而且即使所有电极都被噪声严重破坏,它仍然有效,而这种情况会使尖峰分类变得特别困难。我们的范式还将节省时间和计算量,这两者对于实时脑机接口的成功运行至关重要。实际上,它无需传统方法中冗长的尖峰分类任务,而是涉及一种精确期望的期望最大化算法,该算法速度足够快,甚至可以在解码过程中运行以捕捉神经元状态的潜在缓慢变化。

相似文献

1
Spike train decoding without spike sorting.
Neural Comput. 2008 Apr;20(4):923-63. doi: 10.1162/neco.2008.02-07-478.
2
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
J Neural Eng. 2014 Oct;11(5):056005. doi: 10.1088/1741-2560/11/5/056005. Epub 2014 Aug 1.
3
Spike sorting with hidden Markov models.
J Neurosci Methods. 2008 Sep 15;174(1):126-34. doi: 10.1016/j.jneumeth.2008.06.011. Epub 2008 Jun 21.
4
Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5302-5. doi: 10.1109/IEMBS.2008.4650411.
5
Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
Neural Comput. 2015 Jul;27(7):1438-60. doi: 10.1162/NECO_a_00744. Epub 2015 May 14.
6
Automated spike sorting using density grid contour clustering and subtractive waveform decomposition.
J Neurosci Methods. 2007 Aug 15;164(1):1-18. doi: 10.1016/j.jneumeth.2007.03.025. Epub 2007 Apr 12.
7
Improvement of spike train decoder under spike detection and classification errors using support vector machine.
Med Biol Eng Comput. 2006 Mar;44(1-2):124-30. doi: 10.1007/s11517-005-0009-x.
8
Signal-to-noise ratio improvement in multiple electrode recording.
J Neurosci Methods. 2002 Mar 30;115(1):29-43. doi: 10.1016/s0165-0270(01)00516-7.
9
Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance.
J Neural Eng. 2015 Feb;12(1):016009. doi: 10.1088/1741-2560/12/1/016009. Epub 2014 Dec 11.
10
Automatic spike sorting using tuning information.
Neural Comput. 2009 Sep;21(9):2466-501. doi: 10.1162/neco.2009.12-07-669.

引用本文的文献

2
A Power-Efficient Brain-Machine Interface System With a Sub-mw Feature Extraction and Decoding ASIC Demonstrated in Nonhuman Primates.
IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):395-408. doi: 10.1109/TBCAS.2022.3175926. Epub 2022 Jul 12.
3
Quantifying uncertainty in spikes estimated from calcium imaging data.
Biostatistics. 2023 Apr 14;24(2):481-501. doi: 10.1093/biostatistics/kxab034.
4
The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.
6
Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes.
Cell Rep. 2018 Dec 4;25(10):2635-2642.e5. doi: 10.1016/j.celrep.2018.11.033.
7
Firing rate estimation using infinite mixture models and its application to neural decoding.
J Neurophysiol. 2017 Nov 1;118(5):2902-2913. doi: 10.1152/jn.00818.2016. Epub 2017 Aug 9.
8
Sums of Spike Waveform Features for Motor Decoding.
Front Neurosci. 2017 Jul 18;11:406. doi: 10.3389/fnins.2017.00406. eCollection 2017.
9
Deciphering neuronal population codes for acute thermal pain.
J Neural Eng. 2017 Jun;14(3):036023. doi: 10.1088/1741-2552/aa644d. Epub 2017 Apr 6.
10
Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.
J Neural Eng. 2016 Jun;13(3):036009. doi: 10.1088/1741-2560/13/3/036009. Epub 2016 Apr 21.

本文引用的文献

1
Statistical Signal Processing and the Motor Cortex.
Proc IEEE Inst Electr Electron Eng. 2007 May;95(5):881-898. doi: 10.1109/JPROC.2007.894703.
2
Common-input models for multiple neural spike-train data.
Network. 2007 Dec;18(4):375-407. doi: 10.1080/09548980701625173.
3
Closed-loop neural control of cursor motion using a Kalman filter.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4126-9. doi: 10.1109/IEMBS.2004.1404151.
4
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
5
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
6
Statistical encoding model for a primary motor cortical brain-machine interface.
IEEE Trans Biomed Eng. 2005 Jul;52(7):1312-22. doi: 10.1109/TBME.2005.847542.
7
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
Neural Comput. 2005 Sep;17(9):1927-61. doi: 10.1162/0899766054322973.
8
Statistical issues in the analysis of neuronal data.
J Neurophysiol. 2005 Jul;94(1):8-25. doi: 10.1152/jn.00648.2004.
10
Cognitive control signals for neural prosthetics.
Science. 2004 Jul 9;305(5681):258-62. doi: 10.1126/science.1097938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验