Suppr超能文献

基于幂变换方法的磁共振图像分割

MR image segmentation using a power transformation approach.

作者信息

Lee Juin-Der, Su Hong-Ren, Cheng Philip E, Liou Michelle, Aston John A D, Tsai Arthur C, Chen Cheng-Yu

机构信息

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.

出版信息

IEEE Trans Med Imaging. 2009 Jun;28(6):894-905. doi: 10.1109/TMI.2009.2012896. Epub 2009 Jan 19.

Abstract

This study proposes a segmentation method for brain MR images using a distribution transformation approach. The method extends traditional Gaussian mixtures expectation-maximization segmentation to a power transformed version of mixed intensity distributions, which includes Gaussian mixtures as a special case. As MR intensities tend to exhibit non-Gaussianity due to partial volume effects, the proposed method is designed to fit non-Gaussian tissue intensity distributions. One advantage of the method is that it is intuitively appealing and computationally simple. To avoid performance degradation caused by intensity inhomogeneity, different methods for correcting bias fields were applied prior to image segmentation, and their correction effects on the segmentation results were examined in the empirical study. The partitions of brain tissues (i.e., gray and white matter) resulting from the method were validated and evaluated against manual segmentation results based on 38 real T1-weighted image volumes from the internet brain segmentation repository, and 18 simulated image volumes from BrainWeb. The Jaccard and Dice similarity indexes were computed to evaluate the performance of the proposed approach relative to the expert segmentations. Empirical results suggested that the proposed segmentation method yielded higher similarity measures for both gray matter and white matter as compared with those based on the traditional segmentation using the Gaussian mixtures approach.

摘要

本研究提出了一种使用分布变换方法对脑部磁共振成像(MR)图像进行分割的方法。该方法将传统的高斯混合期望最大化分割扩展到混合强度分布的幂变换版本,其中高斯混合是一种特殊情况。由于部分容积效应,MR强度往往呈现非高斯性,因此所提出的方法旨在拟合非高斯组织强度分布。该方法的一个优点是直观且计算简单。为避免强度不均匀性导致的性能下降,在图像分割之前应用了不同的偏置场校正方法,并在实证研究中检验了它们对分割结果的校正效果。基于来自互联网脑部分割库的38个真实T1加权图像体积以及来自BrainWeb的18个模拟图像体积,将该方法得到的脑组织(即灰质和白质)分割结果与手动分割结果进行了验证和评估。计算了杰卡德(Jaccard)和骰子(Dice)相似性指数,以评估所提出方法相对于专家分割的性能。实证结果表明,与基于高斯混合方法的传统分割相比,所提出的分割方法在灰质和白质方面都产生了更高的相似性度量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验