Suppr超能文献

基于局部高斯分布拟合能量的脑磁共振图像水平集分割。

Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy.

机构信息

School of Computer Science & Technology, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

J Neurosci Methods. 2010 May 15;188(2):316-25. doi: 10.1016/j.jneumeth.2010.03.004. Epub 2010 Mar 15.

Abstract

This paper presents a variational level set approach in a multi-phase formulation to segmentation of brain magnetic resonance (MR) images with intensity inhomogeneity. In our model, the local image intensities are characterized by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with level set functions and local means and variances as variables. The means and variances of local intensities are considered as spatially varying functions. Therefore, our method is able to deal with intensity inhomogeneity without inhomogeneity correction. Our method has been applied to 3T and 7T MR images with promising results.

摘要

本文提出了一种多相形式的变分水平集方法,用于分割具有强度不均匀性的脑磁共振(MR)图像。在我们的模型中,局部图像强度用具有不同均值和方差的高斯分布来描述。我们定义了一个局部高斯分布拟合能量,其水平集函数和局部均值与方差作为变量。局部强度的均值和方差被视为空间变化的函数。因此,我们的方法能够在无需强度不均匀性校正的情况下处理强度不均匀性。我们的方法已应用于 3T 和 7T 的 MR 图像,取得了良好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验