Suppr超能文献

由自组装的二茂铁基十一烷硫醇单层驱动的微悬臂梁的氧化还原驱动:微机械运动和表面应力起源的研究

Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress.

作者信息

Norman Lana L, Badia Antonella

机构信息

FQRNT Center for Self-Assembled Chemical Structures, Regroupement québécois sur les matériaux de pointe, and Department of Chemistry, Université de Montréal, QC H3C 3J7 Canada.

出版信息

J Am Chem Soc. 2009 Feb 18;131(6):2328-37. doi: 10.1021/ja808400s.

Abstract

The electrochemically induced motion of free-standing microcantilevers is attracting interest as micro/nanoactuators and robotic devices. The development and implementation of these cantilever-based actuating technologies requires a molecular-level understanding of the origin of the surface stress that causes the cantilever to bend. Here, we report a detailed study of the electroactuation dynamics of gold-coated microcantilevers modified with a model, redox-active ferrocenylundecanethiolate self-assembled monolayer (FcC(11)SAu SAM). The microcantilever transducer enabled the observation of the redox transformation of the surface-confined ferrocene. Oxidation of the FcC(11)SAu SAM in perchlorate electrolyte generated a compressive surface stress change of -0.20 +/- 0.04 N m(-1), and cantilever deflections ranging from approximately 0.8 microm to approximately 60 nm for spring constants between approximately 0.01 and approximately 0.8 N m(-1). A comparison of the charge-normalized surface stress of the FcC(11)SAu cantilever with values published for the electrochemical oxidation of polyaniline- and polypyrrole-coated cantilevers reveals a striking 10- to 100-fold greater stress for the monomolecular FcC(11)SAu system compared to the conducting polymer multilayers used for electroactuation. The larger stress change observed for the FcC(11)SAu microcantilever is attributable to steric constraints in the close-packed FcC(11)SAu SAM and an efficient coupling between the chemisorbed FcC(11)S- monolayer and the Au-coated microcantilever transducer (vs physisorbed conducting polymers). The microcantilever deflection vs quantity of electrogenerated ferrocenium obtained in cyclic voltammetry and potential step/hold experiments, as well as the surface stress changes obtained for mixed FcC(11)S-/C(11)SAu SAMs containing different populations of clustered vs isolated ferrocenes, have permitted us to establish the molecular basis of stress generation. Our results strongly suggest that the redox-induced deflection of a FcC(11)SAu microcantilever is caused by a monolayer volume expansion resulting from collective reorientational motions induced by the complexation of perchlorate ions to the surface-immobilized ferroceniums. The cantilever responds to the lateral pressure exerted by an ensemble of reorienting ferrocenium-bearing alkylthiolates upon each other rather than individual anion pairing events. This finding has general implications for using SAM-modified microcantilevers as (bio)sensors because it indicates that the cantilever responds to collective in-plane molecular interactions rather than reporting individual (bio)chemical events.

摘要

独立式微悬臂梁的电化学诱导运动作为微/纳米致动器和机器人设备正引起人们的关注。这些基于悬臂梁的致动技术的开发和应用需要从分子层面理解导致悬臂梁弯曲的表面应力的起源。在此,我们报告了对用模型氧化还原活性二茂铁基十一硫醇自组装单层(FcC(11)SAu SAM)修饰的金涂层微悬臂梁的电驱动动力学的详细研究。微悬臂梁传感器能够观察表面受限二茂铁的氧化还原转变。在高氯酸盐电解质中,FcC(11)SAu SAM的氧化产生了-0.20±0.04 N m(-1)的压缩表面应力变化,对于弹簧常数在约0.01至约0.8 N m(-1)之间的情况,悬臂梁的挠度范围从约0.8微米到约60纳米。将FcC(11)SAu悬臂梁的电荷归一化表面应力与已发表的聚苯胺和聚吡咯涂层悬臂梁的电化学氧化值进行比较,结果表明,与用于电驱动的导电聚合物多层膜相比,单分子FcC(11)SAu系统的应力大10至100倍。在FcC(11)SAu微悬臂梁中观察到的较大应力变化归因于紧密堆积的FcC(11)SAu SAM中的空间位阻限制以及化学吸附的FcC(11)S-单层与金涂层微悬臂梁传感器之间的有效耦合(相对于物理吸附的导电聚合物)。在循环伏安法和电位阶跃/保持实验中获得的微悬臂梁挠度与电生成的二茂铁离子数量的关系,以及对于含有不同聚集态与孤立态二茂铁群体的混合FcC(11)S-/C(11)SAu SAM获得的表面应力变化,使我们能够建立应力产生的分子基础。我们的结果强烈表明,FcC(11)SAu微悬臂梁的氧化还原诱导挠度是由高氯酸根离子与表面固定的二茂铁离子络合诱导的集体重排运动导致的单层体积膨胀引起的。悬臂梁对相互重排的含二茂铁烷基硫醇盐整体施加的侧向压力做出响应,而不是对单个阴离子配对事件做出响应。这一发现对于将SAM修饰的微悬臂梁用作(生物)传感器具有普遍意义,因为它表明悬臂梁对集体平面内分子相互作用做出响应,而不是报告单个(生物)化学事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验