Harris Kristopher J, Wasylishen Roderick E
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Inorg Chem. 2009 Mar 2;48(5):2316-32. doi: 10.1021/ic8022198.
Solid-state nuclear magnetic resonance has been used to study several cyanoaurates. Carbon-13 and nitrogen-15 NMR spectra of samples enriched with isotopically labeled 13C,15N cyanide ligands were recorded for stationary samples and samples spinning at the magic angle. Several salts of the dicyanoaurate(I) anion, M[Au(CN)2], where M = n-butylammonium, potassium, and thallium, were studied via solid-state NMR. A gold(III) cyanide, K[Au(CN)4], was also investigated. Carbon-13 and nitrogen-15 chemical shift tensors are reported for each salt, as are the measured 13C,15N direct dipolar coupling constants together with the related derived cyanide bond lengths, r(C,N). The value for r(C,N) in [(n-C4H9)4N][Au(CN)2], 1.17(5) A, was determined to be more realistic than a previously reported X-ray diffraction value of 1.03(4) A. Large 13C NMR line widths from Tl[Au(CN)2], 250-315 Hz, are attributed to coupling with 197Au (I = 3/2) and/or 203/205Tl (I = 1/2), as confirmed by measurements of the transverse relaxation constant, T2. Investigation of the carbon-13 chemical shifts for cyanide ligands bound to gold involved in a variety of metallophilic bonding environments demonstrates that the chemical shift is sensitive to metallophilic bonding. Differences in Au-Tl metallophilic bonding are shown to cause a difference in the isotropic carbon-13 chemical shift of up to 15.7 ppm, while differences in Au-Au aurophilic bonding are found to be responsible for a change of up to 5.9 ppm. The disordered polymeric material gold(I) monocyanide, AuCN, was also investigated using 13C and 15N SSNMR. Two-dimensional 13C,13C double-quantum dipolar-recoupling spectroscopy was used to probe connectivity in this material. The 13C NMR site multiplicity in AuCN is explained on the basis of sensitivity of the carbon-13 chemical shift to aurophilic bonding of the directly bonded gold atom. This assignment allows estimation of the position of the linear [-M-CN-]infinity chain's position with respect to the neighboring polymer chain. For the samples studied, a range of 7 +/- 2% to 25 +/- 5% of the AuCN chains are found to be "slipped" instead of aligned with the neighboring chains at the metal position.
固态核磁共振已被用于研究几种氰基金属酸盐。对于富含同位素标记的(^{13}C)、(^{15}N)氰化物配体的样品,记录了其在静态和以魔角旋转时的碳-13和氮-15核磁共振谱。通过固态核磁共振研究了二氰基金(I)阴离子(M[Au(CN)_2])(其中(M =)正丁基铵、钾和铊)的几种盐。还研究了一种氰基金(III)盐(K[Au(CN)_4])。报告了每种盐的碳-13和氮-15化学位移张量,以及测量的(^{13}C)、(^{15}N)直接偶极耦合常数以及相关推导的氰化物键长(r(C,N))。已确定([(n-C_4H_9)_4N][Au(CN)_2])中(r(C,N))的值为(1.17(5)\mathring{A}),比先前报道的X射线衍射值(1.03(4)\mathring{A})更符合实际。(Tl[Au(CN)2])的碳-13核磁共振谱线宽较大,为(250 - 315)赫兹,这归因于与(^{197}Au)((I = 3/2))和/或(^{203/205}Tl)((I = 1/2))的耦合,横向弛豫常数(T_2)的测量证实了这一点。对参与各种亲金属键合环境的与金结合的氰化物配体的碳-13化学位移的研究表明,化学位移对亲金属键合敏感。结果表明,金-铊亲金属键合的差异会导致各向同性碳-13化学位移相差高达(15.7) ppm,而金-金亲金键合的差异则导致变化高达(5.9) ppm。还使用(^{13}C)和(^{15}N)固态核磁共振研究了无序聚合物材料一氰基金(I) (AuCN)。二维(^{13}C)、(^{13}C)双量子偶极重耦光谱用于探测该材料中的连接性。基于碳-13化学位移对直接键合的金原子的亲金键合的敏感性,解释了(AuCN)中碳-13核磁共振位点的多重性。这种归属使得能够估计线性([-M-CN-]{\infty})链相对于相邻聚合物链的位置。对于所研究的样品,发现(7\pm2%)至(25\pm5%)的(AuCN)链在金属位置处“滑移”,而不是与相邻链对齐。