Lin Wan-Jung, Walthers Don, Connelly James E, Burnside Kellie, Jewell Kelsea A, Kenney Linda J, Rajagopal Lakshmi
Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, WA 98101, USA.
Mol Microbiol. 2009 Mar;71(6):1477-95. doi: 10.1111/j.1365-2958.2009.06616.x. Epub 2009 Jan 23.
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.
所有生物都与外部环境进行交流以维持生存和存在。在原核生物中,交流是通过由组氨酸激酶和反应调节因子组成的双组分系统(TCS)实现的。在真核生物中,信号传导是由丝氨酸/苏氨酸激酶和酪氨酸激酶完成的。尽管TCS和丝氨酸/苏氨酸激酶在原核生物中共存,但这些家族之间的直接相互作用最早是在B族链球菌(GBS)中被描述的。一种丝氨酸/苏氨酸激酶(Stk1)和一个TCS(CovR/CovS)共同调节GBS中的毒素表达。通常,像CovR这样的调节因子与启动子的结合是由保守活性位点天冬氨酸(D53)的磷酸化控制的。在本研究中,我们表明Stk1在苏氨酸65位点使CovR磷酸化。使用磷酸模拟和沉默替代来评估GBS中CovR苏氨酸磷酸化的功能后果。与编码非磷酸化T65A等位基因的菌株不同,编码磷酸模拟T65E等位基因的GBS在CovR调节方面存在缺陷。此外,与野生型或T65A CovR相比,T65E CovR无法结合启动子DNA,并且D53位点的磷酸化减少,这与Stk1磷酸化的CovR相似。总体而言,我们为反应调节因子控制的一种新机制提供了证据,该机制使GBS(可能还有其他原核生物)能够微调基因表达以适应环境。