Pauli Ivani, Timmers Luis Fernando Saraiva Macedo, Caceres Rafael Andrade, Basso Luiz Augusto, Santos Diógenes Santiago, de Azevedo Walter Filgueira
Laboratório de Bioquímica Estrutural, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
J Mol Model. 2009 Aug;15(8):913-22. doi: 10.1007/s00894-008-0445-2. Epub 2009 Jan 27.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides, except adenosine, to generate ribose 1-phosphate and the purine base. This work describes for the first time a structural model of PNP from Bacteroides fragilis (Bf). We modeled the complexes of BfPNP with six different ligands in order to determine the structural basis for specificity of these ligands against BfPNP. Comparative analysis of the model of BfPNP and the structure of HsPNP allowed identification of structural features responsible for differences in the computationally determined ligand affinities. The molecular dynamics (MD) simulation was assessed to evaluate the overall stability of the BfPNP model. The superposition of the final onto the initial minimized structure shows that there are no major conformational changes from the initial model, which is consistent with the relatively low root mean square deviation (RMSD). The results indicate that the structure of the model was stable during MD, and does not exhibit loosely structured loop regions or domain terminals.
嘌呤核苷磷酸化酶(PNP)催化嘌呤核苷和脱氧核苷(腺苷除外)的N-核糖苷键的可逆磷酸解,生成1-磷酸核糖和嘌呤碱。这项工作首次描述了脆弱拟杆菌(Bf)的PNP的结构模型。我们对BfPNP与六种不同配体的复合物进行了建模,以确定这些配体对BfPNP特异性的结构基础。对BfPNP模型和HsPNP结构的比较分析,使得能够识别出导致计算确定的配体亲和力差异的结构特征。评估了分子动力学(MD)模拟以评估BfPNP模型的整体稳定性。最终结构与初始最小化结构的叠加表明,与初始模型相比没有重大构象变化,这与相对较低的均方根偏差(RMSD)一致。结果表明,该模型的结构在MD过程中是稳定的,并且没有表现出结构松散的环区域或结构域末端。