Suppr超能文献

嘌呤核苷磷酸化酶。2. 催化机制。

Purine nucleoside phosphorylase. 2. Catalytic mechanism.

作者信息

Erion M D, Stoeckler J D, Guida W C, Walter R L, Ealick S E

机构信息

Central Research Laboratory, Ciba-Geigy Ltd., Basel, Switzerland. mark.erion.gensia.com

出版信息

Biochemistry. 1997 Sep 30;36(39):11735-48. doi: 10.1021/bi961970v.

Abstract

X-ray crystallography, molecular modeling, and site-directed mutagenesis were used to delineate the catalytic mechanism of purine nucleoside phosphorylase (PNP). PNP catalyzes the reversible phosphorolysis of purine nucleosides to the corresponding purine base and ribose 1-phosphate using a substrate-assisted catalytic mechanism. The proposed transition state (TS) features an oxocarbenium ion that is stabilized by the cosubstrate phosphate dianion which itself functions as part of a catalytic triad (Glu89-His86-PO4=). Participation of phosphate in the TS accounts for the poor hydrolytic activity of PNP and is likely to be the mechanistic feature that differentiates phosphorylases from glycosidases. The proposed PNP TS also entails a hydrogen bond between N7 and a highly conserved Asn. Hydrogen bond donation to N7 in the TS stabilizes the negative charge that accumulates on the purine ring during glycosidic bond cleavage. Kinetic studies using N7-modified analogs provided additional support for the hydrogen bond. Crystallographic studies of 13 human PNP-ligand complexes indicated that PNP uses a ligand-induced conformational change to position Asn243 and other key residues in the active site for catalysis. These studies also indicated that purine nucleosides bind to PNP with a nonstandard glycosidic torsion angle (+anticlinal) and an uncommon sugar pucker (C4'-endo). Single point energy calculations predicted the binding conformation to enhance phosphorolysis through ligand strain. Structural data also suggested that purine binding precedes ribose 1-phosphate binding in the synthetic direction whereas the order of substrate binding was less clear for phosphorolysis. Conservation of the catalytically important residues across nucleoside phosphorylases with specificity for 6-oxopurine nucleosides provided further support for the proposed catalytic mechanism.

摘要

X射线晶体学、分子建模和定点诱变技术被用于阐明嘌呤核苷磷酸化酶(PNP)的催化机制。PNP利用底物辅助催化机制催化嘌呤核苷可逆磷酸解为相应的嘌呤碱基和核糖1-磷酸。所提出的过渡态(TS)的特征是一个氧碳鎓离子,它由共底物磷酸二价阴离子稳定,该阴离子本身作为催化三联体(Glu89-His86-PO4=)的一部分发挥作用。磷酸参与过渡态解释了PNP水解活性较差的原因,并且可能是使磷酸化酶区别于糖苷酶的机制特征。所提出的PNP过渡态还涉及N7与一个高度保守的天冬酰胺之间的氢键。在过渡态中向N7提供氢键可稳定糖苷键断裂过程中嘌呤环上积累的负电荷。使用N7修饰类似物的动力学研究为该氢键提供了额外支持。对13种人PNP-配体复合物的晶体学研究表明,PNP利用配体诱导的构象变化将天冬酰胺N243和活性位点中的其他关键残基定位用于催化。这些研究还表明,嘌呤核苷以非标准糖苷扭转角(+反斜)和不常见的糖折叠(C4'-内型)与PNP结合。单点能量计算预测了结合构象通过配体应变增强磷酸解作用。结构数据还表明,在合成方向上嘌呤结合先于核糖1-磷酸结合,而对于磷酸解,底物结合顺序不太明确。对具有6-氧代嘌呤核苷特异性的核苷磷酸化酶中催化重要残基的保守性为所提出的催化机制提供了进一步支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验