Morra Jonathan H, Tu Zhuowen, Apostolova Liana G, Green Amity E, Avedissian Christina, Madsen Sarah K, Parikshak Neelroop, Hua Xue, Toga Arthur W, Jack Clifford R, Schuff Norbert, Weiner Michael W, Thompson Paul M
Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA.
Hum Brain Mapp. 2009 Sep;30(9):2766-88. doi: 10.1002/hbm.20708.
We used a new method we developed for automated hippocampal segmentation, called the auto context model, to analyze brain MRI scans of 400 subjects from the Alzheimer's disease neuroimaging initiative. After training the classifier on 21 hand-labeled expert segmentations, we created binary maps of the hippocampus for three age- and sex-matched groups: 100 subjects with Alzheimer's disease (AD), 200 with mild cognitive impairment (MCI) and 100 elderly controls (mean age: 75.84; SD: 6.64). Hippocampal traces were converted to parametric surface meshes and a radial atrophy mapping technique was used to compute average surface models and local statistics of atrophy. Surface-based statistical maps visualized links between regional atrophy and diagnosis (MCI versus controls: P = 0.008; MCI versus AD: P = 0.001), mini-mental state exam (MMSE) scores, and global and sum-of-boxes clinical dementia rating scores (CDR; all P < 0.0001, corrected). Right but not left hippocampal atrophy was associated with geriatric depression scores (P = 0.004, corrected); hippocampal atrophy was not associated with subsequent decline in MMSE and CDR scores, educational level, ApoE genotype, systolic or diastolic blood pressure measures, or homocysteine. We gradually reduced sample sizes and used false discovery rate curves to examine the method's power to detect associations with diagnosis and cognition in smaller samples. Forty subjects were sufficient to discriminate AD from normal and correlate atrophy with CDR scores; 104, 200, and 304 subjects, respectively, were required to correlate MMSE with atrophy, to distinguish MCI from normal, and MCI from AD.
我们使用了一种我们开发的用于自动海马体分割的新方法,即自动上下文模型,来分析来自阿尔茨海默病神经影像倡议组织的400名受试者的脑部磁共振成像扫描数据。在对21个手动标记的专家分割结果进行分类器训练后,我们为三个年龄和性别匹配的组创建了海马体的二元图谱:100名阿尔茨海默病(AD)患者、200名轻度认知障碍(MCI)患者和100名老年对照者(平均年龄:75.84;标准差:6.64)。海马体轨迹被转换为参数化表面网格,并使用径向萎缩映射技术来计算平均表面模型和萎缩的局部统计数据。基于表面的统计图谱可视化了区域萎缩与诊断(MCI与对照者:P = 0.008;MCI与AD:P = 0.001)、简易精神状态检查表(MMSE)评分以及整体和分项临床痴呆评定量表评分(CDR;所有P < 0.0001,校正后)之间的联系。右侧而非左侧海马体萎缩与老年抑郁评分相关(P = 0.004,校正后);海马体萎缩与MMSE和CDR评分的后续下降、教育水平、载脂蛋白E基因型、收缩压或舒张压测量值或同型半胱氨酸无关。我们逐渐减少样本量,并使用错误发现率曲线来检验该方法在较小样本中检测与诊断和认知关联的能力。40名受试者足以区分AD与正常情况,并将萎缩与CDR评分相关联;分别需要104名、200名和304名受试者才能将MMSE与萎缩相关联、区分MCI与正常情况以及区分MCI与AD。