Suppr超能文献

蜜蜂基于数字的视觉概括能力

Number-based visual generalisation in the honeybee.

作者信息

Gross Hans J, Pahl Mario, Si Aung, Zhu Hong, Tautz Jürgen, Zhang Shaowu

机构信息

Biocentre, University of Würzburg, Würzburg, Germany.

出版信息

PLoS One. 2009;4(1):e4263. doi: 10.1371/journal.pone.0004263. Epub 2009 Jan 28.

Abstract

Although the numerical abilities of many vertebrate species have been investigated in the scientific literature, there are few convincing accounts of invertebrate numerical competence. Honeybees, Apis mellifera, by virtue of their other impressive cognitive feats, are a prime candidate for investigations of this nature. We therefore used the well-established delayed match-to-sample paradigm, to test the limits of honeybees' ability to match two visual patterns solely on the basis of the shared number of elements in the two patterns. Using a y-maze, we found that bees can not only differentiate between patterns containing two and three elements, but can also use this prior knowledge to differentiate three from four, without any additional training. However, bees trained on the two versus three task could not distinguish between higher numbers, such as four versus five, four versus six, or five versus six. Control experiments confirmed that the bees were not using cues such as the colour of the exact configuration of the visual elements, the combined area or edge length of the elements, or illusory contours formed by the elements. To our knowledge, this is the first report of number-based visual generalisation by an invertebrate.

摘要

尽管许多脊椎动物物种的数字能力已在科学文献中得到研究,但关于无脊椎动物数字能力的令人信服的描述却很少。蜜蜂,即西方蜜蜂,凭借其令人印象深刻的其他认知能力,是此类研究的主要候选对象。因此,我们使用成熟的延迟匹配样本范式,来测试蜜蜂仅基于两种视觉模式中元素的共同数量来匹配这两种视觉模式的能力极限。通过使用Y型迷宫,我们发现蜜蜂不仅能够区分包含两个和三个元素的模式,而且还能利用这一先验知识将三个元素与四个元素区分开来,而无需任何额外训练。然而,在二对三任务中接受训练的蜜蜂无法区分更高的数字,例如四对五、四对六或五对六。对照实验证实,蜜蜂并非利用视觉元素的确切配置颜色、元素的组合面积或边长,或由元素形成的虚幻轮廓等线索。据我们所知,这是关于无脊椎动物基于数字的视觉泛化的首次报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d1/2629729/48dbb971bb43/pone.0004263.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验