Scherag André, Hebebrand Johannes, Schäfer Helmut, Müller Hans-Helge
Institute of Medical Biometry and Epidemiology, Philipps-University, Marburg, Germany.
Biometrics. 2009 Sep;65(3):815-21. doi: 10.1111/j.1541-0420.2008.01174.x. Epub 2009 Jan 23.
Genomewide association studies attempting to unravel the genetic etiology of complex traits have recently gained attention. Frequently, these studies employ a sequential genotyping strategy: A large panel of markers is examined in a subsample of subjects, and the most promising markers are genotyped in the remaining subjects. In this article, we introduce a novel method for such designs enabling investigators to, for example, modify marker densities and sample proportions while strongly controlling the family-wise type I error rate. Loss of efficiency is avoided by redistributing conditional type I error rates of discarded markers. Our approach can be combined with cost optimal designs and entails a greater flexibility than all previously suggested designs. Among other features, it allows for marker selections based upon biological criteria instead of statistical criteria alone, or the option to modify the sample size at any time during the course of the project. For practical applicability, we develop a new algorithm, subsequently evaluate it by simulations, and illustrate it using a real data set.
试图揭示复杂性状遗传病因的全基因组关联研究近来受到了关注。通常,这些研究采用序贯基因分型策略:在一部分受试者子样本中检测大量标记物,然后在其余受试者中对最具潜力的标记物进行基因分型。在本文中,我们针对此类设计引入了一种新方法,使研究者能够,例如,在严格控制家族性Ⅰ型错误率的同时修改标记物密度和样本比例。通过重新分配被舍弃标记物的条件Ⅰ型错误率来避免效率损失。我们的方法可以与成本最优设计相结合,并且比之前所有建议的设计具有更大的灵活性。除其他特点外,它允许基于生物学标准而非仅基于统计标准进行标记物选择,或者在项目过程中的任何时候修改样本量的选项。为了实际应用,我们开发了一种新算法,随后通过模拟对其进行评估,并使用一个真实数据集进行说明。