Suppr超能文献

全基因组关联研究的最优稳健两阶段设计。

Optimal robust two-stage designs for genome-wide association studies.

作者信息

Nguyen Thuy Trang, Pahl Roman, Schäfer Helmut

机构信息

Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Marburg, Germany.

出版信息

Ann Hum Genet. 2009 Nov;73(Pt 6):638-51. doi: 10.1111/j.1469-1809.2009.00544.x.

Abstract

Optimal robust two-stage designs for genome-wide association studies are proposed using the maximum of the recessive, additive and dominant linear trend test statistics. These designs combine cost-saving two-stage genotyping with robustness against misspecification of the genetic model and are much more efficient than designs based on a single model specific test statistic in detecting multiple loci with different modes of inheritance. For given power of 90%, typical cost savings of 34% can be realised by increasing the total sample size by about 13% but genotyping only about half of the sample for the full marker set in the first stage and carrying forward about 0.06% of the markers to the second stage analysis. We also present robust two-stage designs providing optimal allocation of a limited budget for pre-existing samples. If a sample is available which would yield a power of 90% when fully genotyped, genotyping only half of the sample due to a limited budget will typically cause a loss of power of more than 55%. Using an optimal two-stage approach in the same sample under the same budget restrictions will limit the loss of power to less than 10%. In general, the optimal proportion of markers to be followed up in the second stage strongly depends on the cost ratio for chips and individual genotyping, while the design parameters of the optimal designs (total sample size, first stage proportion, first and second stage significance limit) do not much depend on the genetic model assumptions.

摘要

利用隐性、加性和显性线性趋势检验统计量的最大值,提出了全基因组关联研究的最优稳健两阶段设计。这些设计将节省成本的两阶段基因分型与针对遗传模型错误指定的稳健性相结合,在检测具有不同遗传模式的多个基因座时,比基于单一模型特定检验统计量的设计效率更高。在给定90%的检验效能下,通过将总样本量增加约13%,但在第一阶段仅对全标记集的约一半样本进行基因分型,并将约0.06%的标记推进到第二阶段分析,通常可实现34%的成本节约。我们还提出了稳健的两阶段设计,为现有样本提供有限预算的最优分配。如果有一个样本,当对其进行全基因分型时检验效能为90%,由于预算有限仅对一半样本进行基因分型,通常会导致检验效能损失超过55%。在相同预算限制下,对同一样本使用最优两阶段方法将使检验效能损失限制在10%以内。一般来说,第二阶段要跟进的标记的最优比例很大程度上取决于芯片和个体基因分型的成本比,而最优设计的参数(总样本量、第一阶段比例、第一和第二阶段显著性界限)在很大程度上不依赖于遗传模型假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验