Suppr超能文献

人工神经网络在茚地那韦及其降解产物保留分析中的应用

Artificial neural networks in analysis of indinavir and its degradation products retention.

作者信息

Jancić-Stojanović B, Ivanović D, Malenović A, Medenica M

机构信息

Faculty of Pharmacy, Department of Drug Analysis, Belgrade, Serbia.

出版信息

Talanta. 2009 Apr 15;78(1):107-12. doi: 10.1016/j.talanta.2008.10.066. Epub 2008 Nov 17.

Abstract

Artificial neural networks (ANN) are biologically inspired computer programs designed to simulate the way in which the human brain processes the information. In the past few years, coupling of experimental design (ED) and ANN became useful tool in the method optimization. This paper presents the application of ED-ANN in analysis of chromatographic behavior of indinavir and its degradation products. According to preliminary study, full factorial design 2(4) was chosen to set input variables for network training. Experimental data (inputs) and results for retention factors from experiments (outputs) were used to train the ANN with aim to define correlation among variables. For networks training multi-layer perceptron (MLP) with back propagation (BP) algorithm was used. Network with the lowest root mean square (RMS) had 4-8-3 topology. Predicted data were in good agreement with experimental data (correlation was higher than 0.9713 for training set). Regression statistics confirmed good ability of trained network to predict compounds retention.

摘要

人工神经网络(ANN)是受生物启发而设计的计算机程序,旨在模拟人类大脑处理信息的方式。在过去几年中,实验设计(ED)与ANN的结合成为方法优化中的有用工具。本文介绍了ED-ANN在茚地那韦及其降解产物色谱行为分析中的应用。根据初步研究,选择全因子设计2(4)来设置网络训练的输入变量。实验数据(输入)和实验中保留因子的结果(输出)用于训练ANN,目的是确定变量之间的相关性。对于网络训练,使用了具有反向传播(BP)算法的多层感知器(MLP)。具有最低均方根(RMS)的网络具有4-8-3拓扑结构。预测数据与实验数据吻合良好(训练集的相关性高于0.9713)。回归统计证实了训练后的网络具有良好的预测化合物保留的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验