Dabiri Foad, Massey Tammara, Noshadi Hyduke, Hagopian Hagop, Lin C K, Tan Robert, Schmidt Jacob, Sarrafzadeh Majid
Department of Computer Science, University of California, LosAngeles, CA 90095 USA.
IEEE Trans Inf Technol Biomed. 2009 May;13(3):351-9. doi: 10.1109/TITB.2009.2013248. Epub 2009 Jan 23.
The improvement in processor performance through continuous breakthroughs in transistor technology has resulted in the proliferation of lightweight embedded systems. Advances in wireless technology and embedded systems have enabled remote healthcare and telemedicine. While medical examinations could previously extract only localized symptoms through snapshots, now continuous monitoring can discretely analyze how a patient's lifestyle affects his/her physiological conditions and if additional symptoms occur under various stimuli. We demonstrate how medical applications in particular benefit from a hierarchical networking scheme that will improve the quantity and quality of ubiquitous data collection. Our Telehealth networking infrastructure provides flexibility in terms of functionality and the type of applications that it supports. We specifically present a case study that demonstrates the effectiveness of our networked embedded infrastructure in an in vivo pressure application. Experimental results of the in vivo system demonstrate how it can wirelessly transmit pressure readings measuring from 0 to 1.5 lbf/in (2) with an accuracy of 0.02 lbf/in (2). The challenges in biocompatible packaging, transducer drift, power management, and in vivo signal transmission are also discussed. This research brings researchers a step closer to continuous, real-time systemic monitoring that will allow one to analyze the dynamic human physiology.
晶体管技术的持续突破带来了处理器性能的提升,促使了轻量级嵌入式系统的广泛应用。无线技术和嵌入式系统的进步推动了远程医疗保健和远程医学的发展。以前,医学检查只能通过快照提取局部症状,而现在持续监测能够离散地分析患者的生活方式如何影响其生理状况,以及在各种刺激下是否会出现其他症状。我们展示了医学应用如何特别受益于一种分层网络方案,该方案将提高泛在数据收集的数量和质量。我们的远程医疗网络基础设施在功能和所支持的应用类型方面提供了灵活性。我们特别呈现了一个案例研究,展示了我们的网络嵌入式基础设施在体内压力应用中的有效性。体内系统的实验结果表明,它能够以0.02磅力/平方英寸(2)的精度无线传输0至1.5磅力/平方英寸(2)的压力读数。文中还讨论了生物相容性封装、传感器漂移、电源管理和体内信号传输等方面的挑战。这项研究使研究人员更接近持续、实时的全身监测,从而能够分析动态的人体生理状况。