Suppr超能文献

用于间期变化分析的乳腺钼靶影像时间序列上对应微钙化簇的自动区域配准与特征描述

Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis.

作者信息

Filev Peter, Hadjiiski Lubomir, Chan Heang-Ping, Sahiner Berkman, Ge Jun, Helvie Mark A, Roubidoux Marilyn, Zhou Chuan

机构信息

Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904, USA.

出版信息

Med Phys. 2008 Dec;35(12):5340-50. doi: 10.1118/1.3002311.

Abstract

A computerized regional registration and characterization system for analysis of microcalcification clusters on serial mammograms is being developed in our laboratory. The system consists of two stages. In the first stage, based on the location of a detected cluster on the current mammogram, a regional registration procedure identifies the local area on the prior that may contain the corresponding cluster. A search program is used to detect cluster candidates within the local area. The detected cluster on the current image is then paired with the cluster candidates on the prior image to form true (TP-TP) or false (TP-FP) pairs. Automatically extracted features were used in a newly designed correspondence classifier to reduce the number of false pairs. In the second stage, a temporal classifier, based on both current and prior information, is used if a cluster has been detected on the prior image, and a current classifier, based on current information alone, is used if no prior cluster has been detected. The data set used in this study consisted of 261 serial pairs containing biopsy-proven calcification clusters. An MQSA radiologist identified the corresponding clusters on the mammograms. On the priors, the radiologist rated the subtlety of 30 clusters (out of the 261 clusters) as 9 or 10 on a scale of 1 (very obvious) to 10 (very subtle). Leave-one-case-out resampling was used for feature selection and classification in both the correspondence and malignant/benign classification schemes. The search program detected 91.2% (238/261) of the clusters on the priors with an average of 0.42 FPs/image. The correspondence classifier identified 86.6% (226/261) of the TP-TP pairs with 20 false matches (0.08 FPs/image) relative to the entire set of 261 image pairs. In the malignant/benign classification stage the temporal classifier achieved a test A(z) of 0.81 for the 246 pairs which contained a detection on the prior. In addition, a classifier was designed by using the clusters on the current mammograms only. It achieved a test A(z) of 0.72 in classifying the clusters as malignant and benign. The difference between the performance of the temporal classifier and the current classifier was statistically significant (p=0.0014). Our interval change analysis system can detect the corresponding cluster on the prior mammogram with high sensitivity, and classify them with a satisfactory accuracy.

摘要

我们实验室正在开发一种用于分析系列乳房X线照片上微钙化簇的计算机化区域配准和特征描述系统。该系统由两个阶段组成。在第一阶段,基于当前乳房X线照片上检测到的簇的位置,区域配准程序识别先前照片上可能包含相应簇的局部区域。使用搜索程序在该局部区域内检测簇候选对象。然后将当前图像上检测到的簇与先前图像上的簇候选对象配对,形成真(TP-TP)对或假(TP-FP)对。在新设计的对应分类器中使用自动提取的特征来减少假对的数量。在第二阶段,如果先前图像上检测到簇,则使用基于当前和先前信息的时间分类器;如果未检测到先前的簇,则仅使用基于当前信息的当前分类器。本研究中使用的数据集由261对系列图像组成,其中包含经活检证实的钙化簇。一名MQSA放射科医生在乳房X线照片上识别出相应的簇。在先前的图像上,放射科医生将261个簇中的30个簇的细微程度评为9或10(范围为1(非常明显)至10(非常细微))。留一法重采样用于对应分类和恶性/良性分类方案中的特征选择和分类。搜索程序在先前图像上检测到91.2%(238/261)的簇,平均每张图像有0.42个误报。相对于261对图像的整个集合,对应分类器识别出86.6%(226/261)的TP-TP对,有20个错误匹配(每张图像0.08个误报)。在恶性/良性分类阶段,对于先前检测到簇的246对图像,时间分类器的测试A(z)为0.81。此外,设计了一种仅使用当前乳房X线照片上的簇的分类器。在将簇分类为恶性和良性方面,其测试A(z)为0.72。时间分类器和当前分类器性能之间的差异具有统计学意义(p = 0.0014)。我们的间期变化分析系统能够以高灵敏度检测先前乳房X线照片上的相应簇,并以令人满意的准确率对其进行分类。

相似文献

4
Bilateral analysis based false positive reduction for computer-aided mass detection.
Med Phys. 2007 Aug;34(8):3334-44. doi: 10.1118/1.2756612.
10
Temporal change analysis for characterization of mass lesions in mammography.
IEEE Trans Med Imaging. 2007 Jul;26(7):945-53. doi: 10.1109/TMI.2007.897392.

引用本文的文献

1
Deep learning of longitudinal mammogram examinations for breast cancer risk prediction.
Pattern Recognit. 2022 Dec;132. doi: 10.1016/j.patcog.2022.108919. Epub 2022 Jul 22.
2
A Review of Computer-Aided Breast Cancer Diagnosis Using Sequential Mammograms.
Tomography. 2022 Dec 6;8(6):2874-2892. doi: 10.3390/tomography8060241.
3
Growth Dynamics of Mammographic Calcifications: Differentiating Ductal Carcinoma in Situ from Benign Breast Disease.
Radiology. 2019 Jul;292(1):77-83. doi: 10.1148/radiol.2019182599. Epub 2019 May 21.
4
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning.
Sci Rep. 2017 Aug 18;7(1):8738. doi: 10.1038/s41598-017-09315-w.

本文引用的文献

1
3
Temporal change analysis for characterization of mass lesions in mammography.
IEEE Trans Med Imaging. 2007 Jul;26(7):945-53. doi: 10.1109/TMI.2007.897392.
4
Combining two mammographic projections in a computer aided mass detection method.
Med Phys. 2007 Mar;34(3):898-905. doi: 10.1118/1.2436974.
5
Multiview-based computer-aided detection scheme for breast masses.
Med Phys. 2006 Sep;33(9):3135-43. doi: 10.1118/1.2237476.
7
Breast masses: computer-aided diagnosis with serial mammograms.
Radiology. 2006 Aug;240(2):343-56. doi: 10.1148/radiol.2401042099. Epub 2006 Jun 26.
8
Correspondence in texture features between two mammographic views.
Med Phys. 2005 Jun;32(6):1598-606. doi: 10.1118/1.1915013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验