Wei Liyang, Yang Yongyi, Nishikawa Robert M, Jiang Yulei
Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
IEEE Trans Med Imaging. 2005 Mar;24(3):371-80. doi: 10.1109/tmi.2004.842457.
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).
在本文中,我们研究了几种用于对簇状微钙化(MCs)进行自动分类的先进机器学习方法。该分类器是计算机辅助诊断(CADx)方案的一部分,旨在协助放射科医生在乳腺钼靶片上对乳腺癌做出更准确的诊断。我们考虑的方法有:支持向量机(SVM)、核Fisher判别分析(KFD)、相关向量机(RVM)以及委员会机器(集成平均和AdaBoost),其中大多数是最近在统计学习理论中发展起来的。我们将恶性MCs与良性MCs的区分表述为一个监督学习问题,并应用这些学习方法来开发分类算法。作为输入,这些方法使用从簇状MCs中自动提取的图像特征。我们使用一个包含386例患者的697张临床乳腺钼靶片的数据库对这些方法进行了测试,该数据库涵盖了广泛的难以分类的病例。我们使用多维缩放技术分析了该数据库中病例的分布情况,结果表明在特征空间中恶性病例与良性病例并非轻易可分。我们使用接收器操作特征(ROC)分析来评估和比较不同方法的分类性能。此外,我们还研究了如何结合同一病例的多视角乳腺钼靶片信息,以便分类器能够做出最佳决策。在我们的实验中,基于核的方法(即SVM、KFD和RVM)表现最佳(Az = 0.85,SVM),显著优于一种基于神经网络的成熟的、经过临床验证的CADx方法(Az = 0.80)。