Suppr超能文献

一种用于分割组织混合百分比的最大后验概率(MAP)解的期望最大化(EM)方法及其在基于CT的虚拟结肠镜检查中的应用。

An EM approach to MAP solution of segmenting tissue mixture percentages with application to CT-based virtual colonoscopy.

作者信息

Wang Su, Li Lihong, Cohen Harris, Mankes Seth, Chen John J, Liang Zhengrong

机构信息

Department of Radiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.

出版信息

Med Phys. 2008 Dec;35(12):5787-98. doi: 10.1118/1.3013591.

Abstract

Electronic colon cleansing (ECC) is an emerging technique developed to segment the colon lumen from a patient's abdominal computed tomography colonography (CTC) images. However, the residue stool and fluid tagged by contrast materials as well as mixed tissue distribution with partial volume (PV) effect impose several challenges for ECC, resulting in incomplete and overcomplete cleansings. To address the PV effect, this work investigated an improved maximum a posteriori expectation-maximization (MAP-EM) image segmentation algorithm which simultaneously estimates tissue mixture percentages within each image voxel and statistical model parameters for the tissue distribution. Given the segmented tissue mixture information beyond the image voxel level, not only the PV effect has been satisfactorily addressed as a particular case of tissue mixture problem, but incomplete and overcomplete ECC causes could also be maximally avoided. For clinical application to CTC that involves several issues transferring from theoretical analysis to practical validation, an innovative initialization procedure and refined estimation strategy were proposed to build an ECC pipeline based on the MAP-EM segmentation. The pipeline was evaluated based on 52 patient CTC studies, downloaded from the website of the Virtual Colonoscopy Screening Resource Center, by two radiologists. A noticeable improvement over the authors' previous ECC pipeline was documented. Several typical cases were also presented to show visually the improved performance of the presented ECC pipeline.

摘要

电子结肠清洁(ECC)是一种新兴技术,旨在从患者的腹部计算机断层扫描结肠成像(CTC)图像中分割结肠腔。然而,造影剂标记的残留粪便和液体以及具有部分容积(PV)效应的混合组织分布给ECC带来了诸多挑战,导致清洁不彻底和过度清洁。为了解决PV效应,本研究探讨了一种改进的最大后验期望最大化(MAP-EM)图像分割算法,该算法同时估计每个图像体素内的组织混合百分比和组织分布的统计模型参数。鉴于图像体素级别之外的分割组织混合信息,不仅PV效应作为组织混合问题的一个特殊情况得到了令人满意的解决,而且还可以最大程度地避免ECC不彻底和过度清洁的情况。对于涉及从理论分析到实际验证的几个问题的CTC临床应用,提出了一种创新的初始化程序和改进的估计策略,以构建基于MAP-EM分割的ECC流程。该流程由两名放射科医生根据从虚拟结肠镜筛查资源中心网站下载的52例患者的CTC研究进行评估。与作者之前的ECC流程相比,有显著改进。还展示了几个典型案例,直观地显示了所提出的ECC流程的改进性能。

相似文献

7
A Markov Random Field orientation prior for electronic cleansing in CT Colonography.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2018-21. doi: 10.1109/EMBC.2015.7318782.
8
An improved electronic colon cleansing method for detection of polyps by virtual colonoscopy.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:6512-5. doi: 10.1109/IEMBS.2005.1615991.

引用本文的文献

4
Haustral loop extraction for CT colonography using geodesics.利用测地线提取 CT 结肠成像中的结肠袢
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):379-388. doi: 10.1007/s11548-016-1497-x. Epub 2016 Nov 16.
6
An adaptive paradigm for computer-aided detection of colonic polyps.一种用于结肠息肉计算机辅助检测的自适应范式。
Phys Med Biol. 2015 Sep 21;60(18):7207-28. doi: 10.1088/0031-9155/60/18/7207. Epub 2015 Sep 8.
10
Haustral fold segmentation with curvature-guided level set evolution.基于曲率引导水平集演化的分段皱襞
IEEE Trans Biomed Eng. 2013 Feb;60(2):321-31. doi: 10.1109/TBME.2012.2226242. Epub 2012 Oct 26.

本文引用的文献

4
Statistical models of partial volume effect.部分容积效应的统计模型。
IEEE Trans Image Process. 1995;4(11):1531-40. doi: 10.1109/83.469934.
6
Cancer statistics, 2007.2007年癌症统计数据。
CA Cancer J Clin. 2007 Jan-Feb;57(1):43-66. doi: 10.3322/canjclin.57.1.43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验