Suppr超能文献

DNA腺嘌呤甲基化在宿主-病原体相互作用中的作用:错配修复、转录调控等等。

Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more.

作者信息

Marinus Martin G, Casadesus Josep

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, USA.

出版信息

FEMS Microbiol Rev. 2009 May;33(3):488-503. doi: 10.1111/j.1574-6976.2008.00159.x. Epub 2009 Jan 19.

Abstract

The DNA adenine methyltransferase (Dam methylase) of Gammaproteobacteria and the cell cycle-regulated methyltransferase (CcrM) methylase of Alphaproteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as a methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an 'orphan' methylase devoted solely to epigenetic genome modification. The formation of 6-methyladenine reduces the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well-known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and have only partially been understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in Escherichia coli, Salmonella, and Yersinia at the posttranscriptional level.

摘要

γ-变形菌纲的DNA腺嘌呤甲基转移酶(Dam甲基化酶)和α-变形菌纲的细胞周期调控甲基转移酶(CcrM)甲基化酶催化相同的反应(分别以S-腺苷甲硫氨酸作为甲基供体对腺苷部分进行甲基化),作用于相似的DNA靶点(分别为GATC和GANTC)。Dam和CcrM起源于独立的进化过程。它们可能都从一个失去了限制成分的祖先限制修饰系统进化而来,留下了一个专门用于表观遗传基因组修饰的“孤儿”甲基化酶。6-甲基腺嘌呤的形成降低了DNA的热力学稳定性并改变了DNA的曲率。因此,特定腺苷部分的甲基化状态可以影响DNA-蛋白质相互作用。著名的例子包括复制起始复合物与甲基化的oriC结合、MutHLS错配修复复合物识别新复制DNA中的半甲基化GATC,以及RNA聚合酶和转录因子区分启动子和调控DNA基序中的甲基化状态。近年来,Dam和CcrM已被证明在宿主-病原体相互作用中发挥作用。这些作用多种多样,目前仅被部分理解。特别引人关注的是有证据表明Dam甲基化在转录后水平调控大肠杆菌、沙门氏菌和耶尔森氏菌中的毒力基因。

相似文献

1
Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more.
FEMS Microbiol Rev. 2009 May;33(3):488-503. doi: 10.1111/j.1574-6976.2008.00159.x. Epub 2009 Jan 19.
2
Epigenetic gene regulation in the bacterial world.
Microbiol Mol Biol Rev. 2006 Sep;70(3):830-56. doi: 10.1128/MMBR.00016-06.
3
Epigenetic regulation of the bacterial cell cycle.
Curr Opin Microbiol. 2009 Dec;12(6):722-9. doi: 10.1016/j.mib.2009.08.005. Epub 2009 Sep 23.
5
The great GATC: DNA methylation in E. coli.
Trends Genet. 1989 May;5(5):139-43. doi: 10.1016/0168-9525(89)90054-1.
8
N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.
Nat Rev Microbiol. 2006 Mar;4(3):183-92. doi: 10.1038/nrmicro1350.
9
Dam methylation: coordinating cellular processes.
Curr Opin Microbiol. 2005 Apr;8(2):154-60. doi: 10.1016/j.mib.2005.02.009.
10
Role of DNA methyltransferases in epigenetic regulation in bacteria.
Subcell Biochem. 2013;61:81-102. doi: 10.1007/978-94-007-4525-4_4.

引用本文的文献

6
Structural basis of substrate specificity of AMP deaminase and a chimeric ADGF adenosine deaminase.
bioRxiv. 2025 Mar 27:2025.03.26.645602. doi: 10.1101/2025.03.26.645602.
7
Deciphering meropenem persistence in facilitates discovery of anti-persister activity of thymol.
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0138124. doi: 10.1128/aac.01381-24. Epub 2025 Feb 20.
8
DNA methylation confers epigenetic changes in cold-adapted microorganisms in response to cold stress.
Extremophiles. 2025 Feb 13;29(1):16. doi: 10.1007/s00792-025-01381-7.
9
Crosstalk between 6-methyladenine and 4-methylcytosine in exposed to extremely low-frequency electromagnetic field.
iScience. 2024 Jul 27;27(9):110607. doi: 10.1016/j.isci.2024.110607. eCollection 2024 Sep 20.

本文引用的文献

1
Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR.
J Bacteriol. 2008 Nov;190(22):7406-13. doi: 10.1128/JB.01136-08. Epub 2008 Sep 19.
2
Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics.
J Bacteriol. 2008 Oct;190(19):6524-9. doi: 10.1128/JB.00765-08. Epub 2008 Aug 8.
3
Excess SeqA leads to replication arrest and a cell division defect in Vibrio cholerae.
J Bacteriol. 2008 Sep;190(17):5870-8. doi: 10.1128/JB.00479-08. Epub 2008 Jul 11.
4
Clocks and switches: bacterial gene regulation by DNA adenine methylation.
Curr Opin Microbiol. 2008 Apr;11(2):106-12. doi: 10.1016/j.mib.2008.02.012. Epub 2008 Apr 8.
5
RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium.
Mol Microbiol. 2008 May;68(3):573-87. doi: 10.1111/j.1365-2958.2008.06185.x. Epub 2008 Mar 4.
8
A DNA methylation ratchet governs progression through a bacterial cell cycle.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17111-6. doi: 10.1073/pnas.0708112104. Epub 2007 Oct 17.
9
The GATC-binding protein SeqA is required for bile resistance and virulence in Salmonella enterica serovar typhimurium.
J Bacteriol. 2007 Dec;189(23):8496-502. doi: 10.1128/JB.01156-07. Epub 2007 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验