Suppr超能文献

细菌世界中的表观遗传基因调控。

Epigenetic gene regulation in the bacterial world.

作者信息

Casadesús Josep, Low David

机构信息

Departamento de Genética, Universidad de Sevilla, Seville 41080, Spain.

出版信息

Microbiol Mol Biol Rev. 2006 Sep;70(3):830-56. doi: 10.1128/MMBR.00016-06.

Abstract

Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.

摘要

与许多真核生物一样,细菌广泛利用复制后DNA甲基化来对DNA - 蛋白质相互作用进行表观遗传控制。然而,与真核生物不同的是,细菌使用DNA腺嘌呤甲基化(而非DNA胞嘧啶甲基化)作为表观遗传信号。DNA腺嘌呤甲基化在人类和家畜的多种病原体的毒力中发挥作用,包括致病性大肠杆菌、沙门氏菌、弧菌、耶尔森氏菌、嗜血杆菌和布鲁氏菌。在α - 变形杆菌中,CcrM甲基ase对GANTC位点的腺嘌呤甲基化调节细胞周期,并将基因转录与DNA复制耦合。在γ - 变形杆菌中,Dam甲基ase对GATC位点的腺嘌呤甲基化提供DNA复制、染色体分离、错配修复、噬菌体基因组包装、转座酶活性和基因表达调控的信号。Dam甲基化引起的转录抑制似乎比转录激活更为常见。某些启动子仅在DNA复制后的半甲基化间隔期间活跃;当新合成的DNA链甲基化时,抑制恢复。然而,在大肠杆菌基因组中,特定GATC位点的甲基化可被同源DNA结合蛋白阻断。细胞分裂后GATC甲基化的阻断允许DNA甲基化模式传递给子细胞,并可产生不同的表观遗传状态,每种状态通过正反馈环进行传播。在不同的DNA甲基化模式之间切换可以将克隆细菌群体分裂成表观遗传谱系,其方式类似于真核细胞分化。自我传播的DNA甲基化模式的遗传控制大肠杆菌菌毛操纵子、agn43基因和其他编码与毒力相关的细胞表面功能的基因座中的相变。

相似文献

1
Epigenetic gene regulation in the bacterial world.
Microbiol Mol Biol Rev. 2006 Sep;70(3):830-56. doi: 10.1128/MMBR.00016-06.
2
Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more.
FEMS Microbiol Rev. 2009 May;33(3):488-503. doi: 10.1111/j.1574-6976.2008.00159.x. Epub 2009 Jan 19.
3
GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression.
J Mol Biol. 2006 Jan 20;355(3):459-72. doi: 10.1016/j.jmb.2005.11.003. Epub 2005 Nov 18.
5
7
DNA methylation-dependent regulation of pef expression in Salmonella typhimurium.
Mol Microbiol. 2000 Feb;35(4):728-42. doi: 10.1046/j.1365-2958.2000.01743.x.
8
Epigenetic regulation of the bacterial cell cycle.
Curr Opin Microbiol. 2009 Dec;12(6):722-9. doi: 10.1016/j.mib.2009.08.005. Epub 2009 Sep 23.
10
Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4658-67. doi: 10.1073/pnas.1319315110. Epub 2013 Nov 11.

引用本文的文献

1
Why Are Long-Read Sequencing Methods Revolutionizing Microbiome Analysis?
Microorganisms. 2025 Aug 9;13(8):1861. doi: 10.3390/microorganisms13081861.
6
Bacterial conjugation in the ruminant pathogen is influenced by eukaryotic host factors.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0086825. doi: 10.1128/aem.00868-25. Epub 2025 May 27.
7
Epigenetic background of lineage-specific gene expression landscapes of four Staphylococcus aureus hospital isolates.
PLoS One. 2025 May 5;20(5):e0322006. doi: 10.1371/journal.pone.0322006. eCollection 2025.
10
Adaptive Resistance of to Cefquinome Sulfate in an In Vitro Pharmacokinetic Model with Transcriptomic Insights.
Microorganisms. 2025 Feb 2;13(2):329. doi: 10.3390/microorganisms13020329.

本文引用的文献

1
DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium.
J Bacteriol. 2006 Dec;188(23):8160-8. doi: 10.1128/JB.00847-06. Epub 2006 Sep 22.
4
N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.
Nat Rev Microbiol. 2006 Mar;4(3):183-92. doi: 10.1038/nrmicro1350.
5
The finite state projection algorithm for the solution of the chemical master equation.
J Chem Phys. 2006 Jan 28;124(4):044104. doi: 10.1063/1.2145882.
6
Re-examining the role and random nature of phase variation.
FEMS Microbiol Lett. 2006 Jan;254(2):190-7. doi: 10.1111/j.1574-6968.2005.00038.x.
7
Genomic DNA methylation: the mark and its mediators.
Trends Biochem Sci. 2006 Feb;31(2):89-97. doi: 10.1016/j.tibs.2005.12.008. Epub 2006 Jan 5.
8
Autorepression of RctB, an initiator of Vibrio cholerae chromosome II replication.
J Bacteriol. 2006 Jan;188(2):789-93. doi: 10.1128/JB.188.2.789-793.2006.
9
GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression.
J Mol Biol. 2006 Jan 20;355(3):459-72. doi: 10.1016/j.jmb.2005.11.003. Epub 2005 Nov 18.
10
Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase.
J Bacteriol. 2005 Dec;187(23):7901-11. doi: 10.1128/JB.187.23.7901-7911.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验