Suppr超能文献

在不同聚合酶的背景下,RNA聚合酶II的羧基末端结构域不足以提高前体mRNA加帽或剪接的效率。

The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase.

作者信息

Natalizio Barbara J, Robson-Dixon Nicole D, Garcia-Blanco Mariano A

机构信息

Department of Molecular Genetics and Microbiology, Center for RNA Biology, and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Biol Chem. 2009 Mar 27;284(13):8692-702. doi: 10.1074/jbc.M806919200. Epub 2009 Jan 28.

Abstract

Eukaryotic messenger RNA precursors (pre-mRNAs) synthesized by RNA polymerase II (RNAP II) are processed co-transcriptionally. The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II is thought to mediate the coupling of transcription with pre-mRNA processing by coordinating the recruitment of processing factors during synthesis of nascent transcripts. Previous studies have demonstrated that the phosphorylated CTD is required for efficient co-transcriptional processing. In the study presented here we investigated whether the CTD is sufficient to coordinate transcription with pre-mRNA capping and splicing in the context of two other DNA-dependent RNA polymerases, mammalian RNAP III and bacteriophage T7 RNAP. Our results indicate that the CTD fused to the largest subunit of RNAP III (POLR3A) is not sufficient to enhance co-transcriptional pre-mRNA splicing or capping in vivo. Additionally, we analyzed a T7 RNAP-CTD fusion protein and examined its ability to enhance pre-mRNA splicing and capping of both constitutively and alternatively spliced substrates. We observed that the CTD in the context of T7 RNAP was not sufficient to enhance pre-mRNA splicing or capping either in vitro or in vivo. We propose that the efficient coupling of transcription to pre-mRNA processing requires not only the phosphorylated CTD but also other RNAP II specific subunits or associated factors.

摘要

由RNA聚合酶II(RNAP II)合成的真核生物信使RNA前体(前体mRNA)在转录过程中进行加工。RNA聚合酶II最大亚基的羧基末端结构域(CTD)被认为通过在新生转录本合成过程中协调加工因子的募集来介导转录与前体mRNA加工的偶联。先前的研究表明,磷酸化的CTD是高效共转录加工所必需的。在本文所述的研究中,我们研究了在另外两种依赖DNA的RNA聚合酶,即哺乳动物RNAP III和噬菌体T7 RNAP的背景下,CTD是否足以协调转录与前体mRNA加帽和剪接。我们的结果表明,与RNAP III最大亚基(POLR3A)融合的CTD不足以增强体内共转录前体mRNA的剪接或加帽。此外,我们分析了一种T7 RNAP-CTD融合蛋白,并检测了其增强组成型和可变剪接底物的前体mRNA剪接和加帽的能力。我们观察到,在T7 RNAP背景下的CTD在体外或体内均不足以增强前体mRNA的剪接或加帽。我们提出,转录与前体mRNA加工的有效偶联不仅需要磷酸化的CTD,还需要其他RNAP II特异性亚基或相关因子。

相似文献

3
Functional coupling of RNAP II transcription to spliceosome assembly.
Genes Dev. 2006 May 1;20(9):1100-9. doi: 10.1101/gad.1397406.
5
CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo.
Nucleic Acids Res. 2013 Feb 1;41(3):1591-603. doi: 10.1093/nar/gks1327. Epub 2012 Dec 28.
7
The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12666-71. doi: 10.1073/pnas.1835726100. Epub 2003 Oct 20.
8
On the importance of being co-transcriptional.
J Cell Sci. 2002 Oct 15;115(Pt 20):3865-71. doi: 10.1242/jcs.00073.
9
Phosphorylated RNA polymerase II stimulates pre-mRNA splicing.
Genes Dev. 1999 May 15;13(10):1234-9. doi: 10.1101/gad.13.10.1234.
10
Human capping enzyme promotes formation of transcriptional R loops in vitro.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17620-5. doi: 10.1073/pnas.0708866104. Epub 2007 Oct 31.

引用本文的文献

1
Structure of a transcribing Pol II-DSIF-SPT6-U1 snRNP complex.
Nat Commun. 2025 Jul 1;16(1):5823. doi: 10.1038/s41467-025-60979-9.
2
Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.
iScience. 2024 Dec 6;28(1):111541. doi: 10.1016/j.isci.2024.111541. eCollection 2025 Jan 17.
3
Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.
bioRxiv. 2024 Sep 25:2024.09.25.614978. doi: 10.1101/2024.09.25.614978.
4
Towards T7 RNA polymerase (T7RNAP)-based expression system in yeast: challenges and opportunities.
Bioengineered. 2022 Jul-Dec;13(7-12):14947-14959. doi: 10.1080/21655979.2023.2180579.
5
Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing.
Int J Mol Sci. 2021 Nov 18;22(22):12444. doi: 10.3390/ijms222212444.
6
Pre-mRNA Splicing in the Nuclear Landscape.
Cold Spring Harb Symp Quant Biol. 2019;84:11-20. doi: 10.1101/sqb.2019.84.040402. Epub 2020 Jun 3.
7
Interplay of mRNA capping and transcription machineries.
Biosci Rep. 2020 Jan 31;40(1). doi: 10.1042/BSR20192825.
8
C3P3-G1: first generation of a eukaryotic artificial cytoplasmic expression system.
Nucleic Acids Res. 2019 Mar 18;47(5):2681-2698. doi: 10.1093/nar/gkz069.
9
Versatility of Cyclophilins in Plant Growth and Survival: A Case Study in .
Biomolecules. 2019 Jan 10;9(1):20. doi: 10.3390/biom9010020.
10
Identification of RNA targets for the nuclear multidomain cyclophilin atCyp59 and their effect on PPIase activity.
Nucleic Acids Res. 2013 Feb 1;41(3):1783-96. doi: 10.1093/nar/gks1252. Epub 2012 Dec 16.

本文引用的文献

1
Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner.
RNA. 2008 Sep;14(9):1865-73. doi: 10.1261/rna.1006608. Epub 2008 Jul 24.
2
Molecular evolution of the RNA polymerase II CTD.
Trends Genet. 2008 Jun;24(6):289-96. doi: 10.1016/j.tig.2008.03.010. Epub 2008 May 9.
3
Cracking the RNA polymerase II CTD code.
Trends Genet. 2008 Jun;24(6):280-8. doi: 10.1016/j.tig.2008.03.008. Epub 2008 May 3.
4
Functional integration of transcriptional and RNA processing machineries.
Curr Opin Cell Biol. 2008 Jun;20(3):260-5. doi: 10.1016/j.ceb.2008.03.001. Epub 2008 Apr 22.
5
The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3' processing factors.
Mol Cell Biol. 2008 Mar;28(6):1883-91. doi: 10.1128/MCB.01714-07. Epub 2008 Jan 14.
6
Human capping enzyme promotes formation of transcriptional R loops in vitro.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17620-5. doi: 10.1073/pnas.0708866104. Epub 2007 Oct 31.
7
Phosphorylation and functions of the RNA polymerase II CTD.
Genes Dev. 2006 Nov 1;20(21):2922-36. doi: 10.1101/gad.1477006.
8
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
Nat Struct Mol Biol. 2006 Nov;13(11):973-80. doi: 10.1038/nsmb1155. Epub 2006 Oct 8.
9
Breaking barriers to transcription elongation.
Nat Rev Mol Cell Biol. 2006 Aug;7(8):557-67. doi: 10.1038/nrm1981.
10
RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit.
Nat Struct Mol Biol. 2006 Jan;13(1):49-54. doi: 10.1038/nsmb1026. Epub 2005 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验