Suppr超能文献

基因分型错误对I型错误率及基于单倍型的关联分析方法效能的影响。

Impact of genotyping errors on the type I error rate and the power of haplotype-based association methods.

作者信息

Marquard Vivien, Beckmann Lars, Heid Iris M, Lamina Claudia, Chang-Claude Jenny

机构信息

Department of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.

出版信息

BMC Genet. 2009 Jan 29;10:3. doi: 10.1186/1471-2156-10-3.

Abstract

BACKGROUND

We investigated the influence of genotyping errors on the type I error rate and empirical power of two haplotype based association methods applied to candidate regions. We compared the performance of the Mantel Statistic Using Haplotype Sharing and the haplotype frequency based score test with that of the Armitage trend test.Our study is based on 1000 replication of simulated case-control data settings with 500 cases and 500 controls, respectively. One of the examined markers was set to be the disease locus with a simulated odds ratio of 3. Differential and non-differential genotyping errors were introduced following a misclassification model with varying mean error rates per locus in the range of 0.2% to 15.6%.

RESULTS

We found that the type I error rate of all three test statistics hold the nominal significance level in the presence of non-differential genotyping errors and low error rates. For high and differential error rates, the type I error rate of all three test statistics was inflated, even when genetic markers not in Hardy-Weinberg Equilibrium were removed. The empirical power of all three association test statistics remained high at around 89% to 94% when genotyping error rates were low, but decreased to 48% to 80% for high and non-differential genotyping error rates.

CONCLUSION

Currently realistic genotyping error rates for candidate gene analysis (mean error rate per locus of 0.2%) pose no significant problem for the type I error rate as well as the power of all three investigated test statistics.

摘要

背景

我们研究了基因分型错误对应用于候选区域的两种基于单倍型的关联方法的I型错误率和经验检验效能的影响。我们将使用单倍型共享的曼特尔统计量和基于单倍型频率的计分检验的性能与阿米特奇趋势检验的性能进行了比较。我们的研究基于1000次模拟病例对照数据设置的重复,分别有500例病例和500例对照。其中一个被检测的标记被设定为疾病位点,模拟比值比为3。按照错误分类模型引入差异和非差异基因分型错误,每个位点的平均错误率在0.2%至15.6%范围内变化。

结果

我们发现,在存在非差异基因分型错误和低错误率的情况下,所有三种检验统计量的I型错误率均保持在名义显著性水平。对于高错误率和差异错误率,即使去除了不符合哈迪-温伯格平衡的遗传标记,所有三种检验统计量的I型错误率仍会膨胀。当基因分型错误率较低时,所有三种关联检验统计量的经验检验效能在89%至94%左右仍保持较高水平,但对于高错误率和非差异基因分型错误率,其经验检验效能降至48%至80%。

结论

目前候选基因分析中实际的基因分型错误率(每个位点平均错误率为0.2%)对所有三种研究的检验统计量的I型错误率和检验效能均无显著问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e189/2648998/909580871393/1471-2156-10-3-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验