Suppr超能文献

用于协调密集不兼容数据的拓扑超树方法的稳健性

Robustness of topological supertree methods for reconciling dense incompatible data.

作者信息

Willson Stephen J

机构信息

Department of Mathematics, Iowa State University, Ames, IA 50011, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2009 Jan-Mar;6(1):62-75. doi: 10.1109/TCBB.2008.51.

Abstract

Given a collection of rooted phylogenetic trees with overlapping sets of leaves, a compatible supertree S is a single tree whose set of leaves is the union of the input sets of leaves and such that $S$ agrees with each input tree when restricted to the leaves of the input tree. Typically with trees from real data, no compatible supertree exists, and various methods may be utilized to reconcile the incompatibilities in the input trees. This paper focuses on a measure of robustness of a supertree method called its "radius" R. The larger the value of R is, the further the data set can be from a natural correct tree T and yet the method will still output T. It is shown that the maximal possible radius for a method is R = 1/2. Many familiar methods, both for supertrees and consensus trees, are shown to have R = 0, indicating that they need not output a tree T that would seem to be the natural correct answer. A polynomial-time method Normalized Triplet Supertree (NTS) with the maximal possible R = 1/2 is defined. A geometric interpretation is given, and NTS is shown to solve an optimization problem. Additional properties of NTS are described.

摘要

给定一组具有重叠叶集的有根系统发育树,一个兼容的超级树(S)是一棵单一的树,其叶集是输入叶集的并集,并且当(S)限制在输入树的叶上时与每个输入树一致。通常对于来自真实数据的树,不存在兼容的超级树,并且可以使用各种方法来协调输入树中的不兼容性。本文重点关注一种称为“半径”(R)的超级树方法的稳健性度量。(R)的值越大,数据集与自然正确树(T)的差异就越大,但该方法仍会输出(T)。结果表明,一种方法的最大可能半径为(R = 1/2)。许多用于超级树和共识树的常见方法的(R = 0),这表明它们不一定会输出看起来是自然正确答案的树(T)。定义了一种具有最大可能(R = 1/2)的多项式时间方法——归一化三元组超级树(NTS)。给出了一种几何解释,并表明NTS解决了一个优化问题。描述了NTS的其他属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验