Suppr超能文献

用于生命之树的三元组超树启发式算法。

Triplet supertree heuristics for the tree of life.

作者信息

Lin Harris T, Burleigh J Gordon, Eulenstein Oliver

机构信息

Department of Computer Science, Iowa State University, Ames, IA, USA.

出版信息

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S8. doi: 10.1186/1471-2105-10-S1-S8.

Abstract

BACKGROUND

There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics.

RESULTS

We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees.

CONCLUSION

With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods.

摘要

背景

开发快速且准确的超树方法以推断生命之树引起了广泛关注。超树方法将较小的输入树与重叠的分类单元集合并,以构建一个包含输入树中所有分类单元的综合系统发育树。本质上困难的三元组超树问题接受一组输入物种树,并寻找一棵物种树(超树),使其与输入树共享的三元组子树数量最大化。然而,由于缺乏高效且有效的启发式方法,这个超树问题的实用性受到了限制。

结果

我们为三元组超树问题引入了快速爬山启发式方法,该方法对树空间进行逐步搜索,其中每一步都由局部搜索问题实例的精确解引导。为了实现高效的启发式方法,我们为两个标准搜索问题设计了首个非平凡算法,这将时间复杂度比最著名的(朴素)解大幅提高了n倍和n²倍(超树中的分类单元数量)。这些算法使得基于三元组超树问题的大规模超树分析成为可能,而这在以前是无法实现的。我们实现了基于新算法的爬山启发式方法,并且在对两个已发表的超树数据集的分析中,我们证明了我们的新启发式方法在最大化与输入树共享的三元组数量方面优于其他标准超树方法。

结论

借助我们的新启发式方法,三元组超树问题现在对于大规模超树分析在计算上更易于处理,并且它为现有超树方法提供了一种可能更准确的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a781/2648750/3de965192459/1471-2105-10-S1-S8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验