Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Centre National de Recherche Scientifique (CNRS), University of Montpellier 2, 161 rue Ada, 34392 Montpellier, France.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Apr-Jun;7(2):342-53. doi: 10.1109/TCBB.2008.93.
Given a set L of labels and a collection of rooted trees whose leaves are bijectively labeled by some elements of L, the Maximum Agreement Supertree (SMAST) problem is given as follows: find a tree T on a largest label set L(') is included in L that homeomorphically contains every input tree restricted to L('). The problem has phylogenetic applications to infer supertrees and perform tree congruence analyses. In this paper, we focus on the parameterized complexity of this NP-hard problem, considering different combinations of parameters as well as particular cases. We show that SMAST on k rooted binary trees on a label set of size n can be solved in O((8n)k) time, which is an improvement with respect to the previously known O(n3k2) time algorithm. In this case, we also give an O((2k)pkn2) time algorithm, where p is an upper bound on the number of leaves of L missing in a SMAST solution. This shows that SMAST can be solved efficiently when the input trees are mostly congruent. Then, for the particular case where any triple of leaves is contained in at least one input tree, we give O(4pn3) and O(3:12p + n4) time algorithms, obtaining the first fixed-parameter tractable algorithms on a single parameter for this problem. We also obtain intractability results for several combinations of parameters, thus indicating that it is unlikely that fixed-parameter tractable algorithms can be found in these particular cases.
给定一组标签 L 和一组根树,其叶子通过 L 中的某些元素进行一对一标记,最大一致超树(SMAST)问题如下:找到一棵树上标签集 L(') 最大,且包含每个输入树限制在 L(') 中的同构树。该问题在系统发生学上有应用,可以推断超树并执行树同构分析。在本文中,我们关注这个 NP 难问题的参数化复杂性,考虑了不同的参数组合以及特定情况。我们表明,对于大小为 n 的标签集上的 k 棵有根二叉树,SMAST 可以在 O((8n)k)时间内解决,这比以前已知的 O(n3k2)时间算法有所改进。在这种情况下,我们还给出了一个 O((2k)pkn2)时间算法,其中 p 是 SMAST 解中丢失的 L 中叶子数的上限。这表明当输入树高度一致时,SMAST 可以有效地解决。然后,对于任何三个叶子都包含在至少一个输入树中的特定情况,我们给出了 O(4pn3)和 O(3:12p + n4)时间算法,为这个问题的单个参数获得了第一个固定参数可解算法。我们还针对几个参数组合获得了不可解性结果,这表明在这些特定情况下不太可能找到固定参数可解算法。