Suppr超能文献

在修复其AGT1麦芽糖和麦芽三糖转运蛋白基因后,贮藏啤酒酵母的发酵性能得到改善。

Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.

作者信息

Vidgren Virve, Huuskonen Anne, Virtanen Hannele, Ruohonen Laura, Londesborough John

机构信息

VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland.

出版信息

Appl Environ Microbiol. 2009 Apr;75(8):2333-45. doi: 10.1128/AEM.01558-08. Epub 2009 Jan 30.

Abstract

The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer's ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous alpha-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24 degrees Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.

摘要

使用浓度更高的所谓高比重和超高比重(VHG)啤酒麦芽汁来酿造啤酒具有经济和环境优势。然而,目前许多啤酒酵母菌株发酵VHG麦芽汁的速度缓慢且不完全,导致最终啤酒中残留大量不理想的麦芽糖,尤其是麦芽三糖。α-葡萄糖苷通过多种转运蛋白进入酿酒酵母,包括Agt1,它是麦芽糖和麦芽三糖的良好载体。啤酒艾尔酵母菌株的AGT1基因编码功能性转运蛋白,但所研究的拉格酵母菌株的AGT1基因含有一个提前终止密码子,不编码功能性转运蛋白。在本研究中,用艾尔酵母菌株的DNA序列修复了拉格酵母菌株的一个或多个AGT1基因拷贝,并置于组成型启动子的控制下。与未转化菌株相比,修复后的AGT1转化子具有更高的麦芽糖转运活性,尤其是在葡萄糖上生长后(葡萄糖会抑制内源性α-葡萄糖苷转运蛋白基因),并且麦芽三糖转运活性与麦芽糖转运活性的比率更高。它们发酵VHG(24°柏拉图)麦芽汁的速度更快且更完全,产生的啤酒含有更多乙醇,残留的麦芽糖和麦芽三糖更少。转化子的生长和沉降行为与未转化菌株相似,啤酒中酵母衍生的挥发性香气化合物谱也相似。

相似文献

1
Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
Appl Environ Microbiol. 2009 Apr;75(8):2333-45. doi: 10.1128/AEM.01558-08. Epub 2009 Jan 30.
2
Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast.
Yeast. 2011 Aug;28(8):579-94. doi: 10.1002/yea.1888. Epub 2011 Jul 13.
3
The temperature dependence of maltose transport in ale and lager strains of brewer's yeast.
FEMS Yeast Res. 2010 Jun;10(4):402-11. doi: 10.1111/j.1567-1364.2010.00627.x. Epub 2010 Mar 11.
4
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0039724. doi: 10.1128/aem.00397-24. Epub 2024 Jul 8.
5
Himalayan Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01516-19. Print 2019 Nov 15.
6
Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus.
FEMS Yeast Res. 2016 Aug;16(5). doi: 10.1093/femsyr/fow053. Epub 2016 Jun 30.
7
The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
J Appl Microbiol. 2008 Apr;104(4):1103-11. doi: 10.1111/j.1365-2672.2007.03671.x. Epub 2007 Dec 20.
10
Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.
Appl Environ Microbiol. 2005 Dec;71(12):7846-57. doi: 10.1128/AEM.71.12.7846-7857.2005.

引用本文的文献

1
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0039724. doi: 10.1128/aem.00397-24. Epub 2024 Jul 8.
2
Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain.
J Fungi (Basel). 2023 Jul 29;9(8):803. doi: 10.3390/jof9080803.
3
Identification of European isolates of the lager yeast parent Saccharomyces eubayanus.
FEMS Yeast Res. 2022 Dec 7;22(1). doi: 10.1093/femsyr/foac053.
5
Packing a punch: understanding how flavours are produced in lager fermentations.
FEMS Yeast Res. 2021 Jul 24;21(5). doi: 10.1093/femsyr/foab040.
6
Lager-brewing yeasts in the era of modern genetics.
FEMS Yeast Res. 2019 Nov 1;19(7). doi: 10.1093/femsyr/foz063.
7
Himalayan Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01516-19. Print 2019 Nov 15.
8
Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Strains.
Front Genet. 2019 Jul 23;10:683. doi: 10.3389/fgene.2019.00683. eCollection 2019.
9
Laboratory Evolution of a × Hybrid Under Simulated Lager-Brewing Conditions.
Front Genet. 2019 Mar 29;10:242. doi: 10.3389/fgene.2019.00242. eCollection 2019.
10

本文引用的文献

3
A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts.
J Mol Microbiol Biotechnol. 2007;12(3-4):241-8. doi: 10.1159/000099645.
4
Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex.
Appl Environ Microbiol. 2006 Nov;72(11):7176-82. doi: 10.1128/AEM.01704-06. Epub 2006 Sep 15.
5
Improvement of maltotriose fermentation by Saccharomyces cerevisiae.
Lett Appl Microbiol. 2006 Oct;43(4):370-6. doi: 10.1111/j.1472-765X.2006.01982.x.
6
Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.
Appl Environ Microbiol. 2005 Dec;71(12):7846-57. doi: 10.1128/AEM.71.12.7846-7857.2005.
9
Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2002 Nov;68(11):5326-35. doi: 10.1128/AEM.68.11.5326-5335.2002.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验