Gorter de Vries Arthur R, Voskamp Maaike A, van Aalst Aafke C A, Kristensen Line H, Jansen Liset, van den Broek Marcel, Salazar Alex N, Brouwers Nick, Abeel Thomas, Pronk Jack T, Daran Jean-Marc G
Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands.
Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands.
Front Genet. 2019 Mar 29;10:242. doi: 10.3389/fgene.2019.00242. eCollection 2019.
lager-brewing yeasts are domesticated hybrids of x that display extensive inter-strain chromosome copy number variation and chromosomal recombinations. It is unclear to what extent such genome rearrangements are intrinsic to the domestication of hybrid brewing yeasts and whether they contribute to their industrial performance. Here, an allodiploid laboratory hybrid of and was evolved for up to 418 generations on wort under simulated lager-brewing conditions in six independent sequential batch bioreactors. Characterization of 55 single-cell isolates from the evolved cultures showed large phenotypic diversity and whole-genome sequencing revealed a large array of mutations. Frequent loss of heterozygosity involved diverse, strain-specific chromosomal translocations, which differed from those observed in domesticated, aneuploid brewing strains. In contrast to the extensive aneuploidy of domesticated strains, the evolved isolates only showed limited (segmental) aneuploidy. Specific mutations could be linked to calcium-dependent flocculation, loss of maltotriose utilization and loss of mitochondrial activity, three industrially relevant traits that also occur in domesticated strains. This study indicates that fast acquisition of extensive aneuploidy is not required for genetic adaptation of × hybrids to brewing environments. In addition, this work demonstrates that, consistent with the diversity of brewing strains for maltotriose utilization, domestication under brewing conditions can result in loss of this industrially relevant trait. These observations have important implications for the design of strategies to improve industrial performance of novel laboratory-made hybrids.
拉格啤酒酿造酵母是x的驯化杂种,表现出广泛的菌株间染色体拷贝数变异和染色体重组。目前尚不清楚这种基因组重排在杂种酿造酵母驯化过程中的内在程度,以及它们是否对其工业性能有贡献。在这里,一个和的异源二倍体实验室杂种在六个独立的连续分批生物反应器中,于模拟拉格啤酒酿造条件下的麦芽汁中进化了多达418代。对进化培养物中的55个单细胞分离株进行表征,显示出很大的表型多样性,全基因组测序揭示了大量的突变。杂合性的频繁丧失涉及多种菌株特异性的染色体易位,这与在驯化的非整倍体酿造菌株中观察到的不同。与驯化菌株广泛的非整倍体情况相反,进化后的分离株仅显示出有限的(片段性)非整倍体。特定的突变可能与钙依赖性絮凝、麦芽三糖利用能力丧失和线粒体活性丧失有关,这三个工业相关性状在驯化菌株中也会出现。这项研究表明,×杂种对酿造环境的遗传适应并不需要快速获得广泛的非整倍体。此外,这项工作表明,与麦芽三糖利用的酿造菌株多样性一致,在酿造条件下的驯化可能导致这种工业相关性状的丧失。这些观察结果对改进新型实验室制造杂种的工业性能的策略设计具有重要意义。
Front Genet. 2019-3-29
Appl Environ Microbiol. 2019-10-30
Appl Environ Microbiol. 2021-1-15
FEMS Yeast Res. 2015-5
Front Fungal Biol. 2021-9-16
J Mol Evol. 2023-6
Microorganisms. 2022-12-29
Genome Res. 2019-9-23
PLoS Genet. 2019-9-16
Nucleic Acids Res. 2019-2-20
Nat Genet. 2018-10-8
Front Microbiol. 2018-8-10
Microb Cell Fact. 2017-12-5