Suppr超能文献

缺氧亚砷酸盐氧化反硝化富集培养物的分子表征与原位定量

Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures.

作者信息

Sun Wenjie, Sierra-Alvarez Reyes, Fernandez Nuria, Sanz Jose Luis, Amils Ricardo, Legatzki Antje, Maier Raina M, Field Jim A

机构信息

Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA.

出版信息

FEMS Microbiol Ecol. 2009 Apr;68(1):72-85. doi: 10.1111/j.1574-6941.2009.00653.x. Epub 2009 Jan 23.

Abstract

To explore the bacteria involved in the oxidation of arsenite (As(III)) under denitrifying conditions, three enrichment cultures (ECs) and one mixed culture (MC) were characterized that originated from anaerobic environmental samples. The oxidation of As(III) (0.5 mM) was dependent on NO(3) (-) addition and N(2) formation was dependent on As(III) addition. The ratio of N(2)-N formed to As(III) fed approximated the expected stoichiometry of 2.5. A 16S rRNA gene clone library analysis revealed three predominant phylotypes. The first, related to the genus Azoarcus from the division Betaproteobacteria, was found in the three ECs. The other two predominant phylotypes were closely related to the genera Acidovorax and Diaphorobacter within the Comamonadaceae family of Betaproteobacteria, and one of these was present in all of the cultures examined. FISH confirmed that Azoarcus accounted for a large fraction of bacteria present in the ECs. The Azoarcus clones had 96% sequence homology with Azoarcus sp. strain DAO1, an isolate previously reported to oxidize As(III) with nitrate. FISH analysis also confirmed that Comamonadaceae were present in all cultures. Pure cultures of Azoarcus and Diaphorobacter were isolated and shown to be responsible for nitrate-dependent As(III) oxidation. These results, taken as a whole, suggest that bacteria within the genus Azoarcus and the family Comamonadaceae are involved in the observed anoxic oxidation of As(III).

摘要

为了探究在反硝化条件下参与亚砷酸盐(As(III))氧化的细菌,对源自厌氧环境样品的三种富集培养物(ECs)和一种混合培养物(MC)进行了表征。As(III)(0.5 mM)的氧化依赖于硝酸盐的添加,而氮气的形成依赖于As(III)的添加。形成的N₂-N与添加的As(III)的比例接近预期的化学计量比2.5。16S rRNA基因克隆文库分析揭示了三种主要的系统发育型。第一种与β-变形菌门的偶氮弧菌属相关,存在于三种ECs中。另外两种主要的系统发育型与β-变形菌门的Comamonadaceae科中的嗜酸菌属和电子杆菌属密切相关,其中一种存在于所有检测的培养物中。荧光原位杂交(FISH)证实偶氮弧菌在ECs中占细菌的很大一部分。偶氮弧菌克隆与偶氮弧菌属菌株DAO1具有96%的序列同源性,DAO1是先前报道的一种能利用硝酸盐氧化As(III)的菌株。FISH分析还证实Comamonadaceae存在于所有培养物中。分离出了偶氮弧菌和电子杆菌的纯培养物,并证明它们负责硝酸盐依赖的As(III)氧化。总体而言,这些结果表明偶氮弧菌属和Comamonadaceae科中的细菌参与了观察到的As(III)缺氧氧化过程。

相似文献

1
Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures.
FEMS Microbiol Ecol. 2009 Apr;68(1):72-85. doi: 10.1111/j.1574-6941.2009.00653.x. Epub 2009 Jan 23.
3
Anaerobic oxidation of arsenite linked to chlorate reduction.
Appl Environ Microbiol. 2010 Oct;76(20):6804-11. doi: 10.1128/AEM.00734-10. Epub 2010 Aug 20.
5
Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.
Appl Environ Microbiol. 2015 Dec;81(24):8478-88. doi: 10.1128/AEM.01970-15. Epub 2015 Oct 2.
6
Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T.
J Bacteriol. 1999 Oct;181(20):6403-10. doi: 10.1128/JB.181.20.6403-6410.1999.
7
RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater.
Appl Environ Microbiol. 2006 May;72(5):3586-92. doi: 10.1128/AEM.72.5.3586-3592.2006.
8
Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
Environ Sci Technol. 2017 Apr 18;51(8):4377-4386. doi: 10.1021/acs.est.6b06255. Epub 2017 Apr 7.
9
Anaerobic arsenite oxidation by novel denitrifying isolates.
Environ Microbiol. 2006 May;8(5):899-908. doi: 10.1111/j.1462-2920.2005.00977.x.

引用本文的文献

2
ArxA From sp. CIB, an Anaerobic Arsenite Oxidase From an Obligate Heterotrophic and Mesophilic Bacterium.
Front Microbiol. 2019 Jul 30;10:1699. doi: 10.3389/fmicb.2019.01699. eCollection 2019.
3
Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: A Bonanza for Bioremediation?
Microorganisms. 2019 Aug 8;7(8):246. doi: 10.3390/microorganisms7080246.
4
Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic.
Environ Sci Technol. 2017 Jul 5;51(13):7326-7339. doi: 10.1021/acs.est.7b00689. Epub 2017 Jun 23.
6
Molecular phylogenetic analysis of dominant microbial populations in aged refuse.
World J Microbiol Biotechnol. 2014 Mar;30(3):1037-45. doi: 10.1007/s11274-013-1522-y. Epub 2013 Oct 16.
7
Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing.
Microbes Environ. 2013;28(2):257-63. doi: 10.1264/jsme2.me12217. Epub 2013 May 11.
8
Arsenic-transforming microbes and their role in biomining processes.
Environ Sci Pollut Res Int. 2013 Nov;20(11):7728-39. doi: 10.1007/s11356-012-1449-0. Epub 2013 Jan 9.
10
Long term performance of an arsenite-oxidizing-chlorate-reducing microbial consortium in an upflow anaerobic sludge bed (UASB) bioreactor.
Bioresour Technol. 2011 Apr;102(8):5010-6. doi: 10.1016/j.biortech.2011.01.069. Epub 2011 Jan 28.

本文引用的文献

1
Anoxic oxidation of arsenite linked to denitrification in sludges and sediments.
Water Res. 2008 Nov;42(17):4569-77. doi: 10.1016/j.watres.2008.08.004. Epub 2008 Aug 13.
2
Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
J Appl Microbiol. 2008 Aug;105(2):529-39. doi: 10.1111/j.1365-2672.2008.03790.x. Epub 2008 Apr 7.
3
Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1.
Proteomics. 2007 Jun;7(13):2222-39. doi: 10.1002/pmic.200600987.
4
Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase.
Biochemistry. 2007 Jun 26;46(25):7637-46. doi: 10.1021/bi700633c. Epub 2007 Jun 2.
5
Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
Environ Microbiol. 2007 Apr;9(4):934-43. doi: 10.1111/j.1462-2920.2006.01215.x.
7
The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers.
Biochem Biophys Res Commun. 2007 Mar 16;354(3):662-7. doi: 10.1016/j.bbrc.2007.01.004. Epub 2007 Jan 9.
8
Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH.
FEMS Microbiol Ecol. 2007 Apr;60(1):98-112. doi: 10.1111/j.1574-6941.2006.00276.x. Epub 2007 Jan 23.
9
Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil.
FEMS Microbiol Lett. 2006 Dec;265(1):118-25. doi: 10.1111/j.1574-6968.2006.00478.x.
10
Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum.
Structure. 2006 Sep;14(9):1377-88. doi: 10.1016/j.str.2006.07.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验