Suppr超能文献

基于RNA的稳定同位素探测及从汽油污染地下水中分离厌氧苯降解细菌

RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater.

作者信息

Kasai Yuki, Takahata Yoh, Manefield Mike, Watanabe Kazuya

机构信息

Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.

出版信息

Appl Environ Microbiol. 2006 May;72(5):3586-92. doi: 10.1128/AEM.72.5.3586-3592.2006.

Abstract

Stable isotope probing (SIP) of benzene-degrading bacteria in gasoline-contaminated groundwater was coupled to denaturing gradient gel electrophoresis (DGGE) of DNA fragments amplified by reverse transcription-PCR from community 16S rRNA molecules. Supplementation of the groundwater with [(13)C(6)]benzene together with an electron acceptor (nitrate, sulfate, or oxygen) showed that a phylotype affiliated with the genus Azoarcus specifically appeared in the (13)C-RNA fraction only when nitrate was supplemented. This phylotype was also observed as the major band in DGGE analysis of bacterial 16S rRNA gene fragments amplified by PCR from the gasoline-contaminated groundwater. In order to isolate the Azoarcus strains, the groundwater sample was streaked on agar plates containing nonselective diluted CGY medium, and the DGGE analysis was used to screen colonies formed on the plates. This procedure identified five bacterial isolates (from 60 colonies) that corresponded to the SIP-identified Azoarcus phylotype, among which two strains (designated DN11 and AN9) degraded benzene under denitrifying conditions. Incubation of these strains with [(14)C]benzene showed that the labeled carbon was mostly incorporated into (14)CO(2) within 14 days. These results indicate that the Azoarcus population was involved in benzene degradation in the gasoline-contaminated groundwater under denitrifying conditions. We suggest that RNA-based SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function.

摘要

将汽油污染地下水中苯降解细菌的稳定同位素探测(SIP)与通过逆转录聚合酶链反应(RT-PCR)从群落16S rRNA分子扩增的DNA片段的变性梯度凝胶电泳(DGGE)相结合。向地下水中添加[(13)C(6)]苯以及电子受体(硝酸盐、硫酸盐或氧气)表明,仅在添加硝酸盐时,与偶氮弧菌属相关的一个系统型才特异性地出现在(13)C-RNA组分中。在对从汽油污染地下水中通过聚合酶链反应(PCR)扩增的细菌16S rRNA基因片段进行DGGE分析时,该系统型也被观察到是主要条带。为了分离偶氮弧菌菌株,将地下水样品划线接种在含有非选择性稀释CGY培养基的琼脂平板上,并使用DGGE分析筛选平板上形成的菌落。该程序鉴定出5株细菌分离物(来自60个菌落),它们与SIP鉴定的偶氮弧菌系统型相对应,其中两株(命名为DN11和AN9)在反硝化条件下降解苯。用[(14)C]苯培养这些菌株表明,标记的碳在14天内大多被整合到(14)CO(2)中。这些结果表明,在反硝化条件下,偶氮弧菌群体参与了汽油污染地下水中苯的降解。我们认为,基于RNA的SIP鉴定与非选择性分离物的系统发育筛选相结合,有助于分离具有特定功能的富集/分离抗性微生物。

相似文献

1
RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater.
Appl Environ Microbiol. 2006 May;72(5):3586-92. doi: 10.1128/AEM.72.5.3586-3592.2006.
3
Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures.
J Biosci Bioeng. 2009 Dec;108(6):501-7. doi: 10.1016/j.jbiosc.2009.06.005.
5
Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes.
Appl Environ Microbiol. 2011 Jul;77(14):5056-61. doi: 10.1128/AEM.00335-11. Epub 2011 May 20.
7
Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation.
Appl Microbiol Biotechnol. 2006 Dec;73(3):713-22. doi: 10.1007/s00253-006-0522-3. Epub 2006 Sep 7.
9
Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.
Appl Microbiol Biotechnol. 2004 Oct;65(5):611-9. doi: 10.1007/s00253-004-1596-4. Epub 2004 Jul 20.
10
Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures.
Environ Microbiol. 2003 Feb;5(2):92-102. doi: 10.1046/j.1462-2920.2003.00390.x.

引用本文的文献

2
Iodate respiration by sp. DN11 and its potential use for removal of radioiodine from contaminated aquifers.
Front Microbiol. 2023 Apr 17;14:1162788. doi: 10.3389/fmicb.2023.1162788. eCollection 2023.
3
Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China.
Int J Environ Res Public Health. 2022 Dec 8;19(24):16449. doi: 10.3390/ijerph192416449.
6
Anaerobic benzene mineralization by natural microbial communities from Niger Delta.
Biodegradation. 2021 Feb;32(1):37-52. doi: 10.1007/s10532-020-09922-x. Epub 2020 Dec 2.
7
Simulating metagenomic stable isotope probing datasets with MetaSIPSim.
BMC Bioinformatics. 2020 Jan 30;21(1):37. doi: 10.1186/s12859-020-3372-6.
8
Complete Genome Sequence of an Anaerobic Benzene-Degrading Bacterium, sp. Strain DN11.
Microbiol Resour Announc. 2019 Mar 14;8(11):e01699-18. doi: 10.1128/MRA.01699-18.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms.
Appl Environ Microbiol. 1996 Jan;62(1):288-91. doi: 10.1128/aem.62.1.288-291.1996.
3
Benzene oxidation coupled to sulfate reduction.
Appl Environ Microbiol. 1995 Mar;61(3):953-8. doi: 10.1128/aem.61.3.953-958.1995.
4
Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB.
Appl Environ Microbiol. 2005 Dec;71(12):8649-55. doi: 10.1128/AEM.71.12.8649-8655.2005.
6
Hydroxylation and carboxylation--two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB.
Appl Environ Microbiol. 2005 Sep;71(9):5427-32. doi: 10.1128/AEM.71.9.5427-5432.2005.
8
Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.
Appl Environ Microbiol. 2005 Jun;71(6):3355-8. doi: 10.1128/AEM.71.6.3355-3358.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验