Li Zheng, Li Quanzheng, Yu Xiaoli, Conti Peter S, Leahy Richard M
Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089, USA.
IEEE Trans Med Imaging. 2009 Feb;28(2):230-40. doi: 10.1109/TMI.2008.929105.
We describe a matched subspace detection algorithm to assist in the detection of small tumors in dynamic positron emission tomography (PET) images. The algorithm is designed to differentiate tumors from background using the time activity curves (TACs) that characterize the uptake of PET tracers. TACs are modeled using linear subspaces with additive Gaussian noise. Using TACs from a primary tumor region of interest (ROI) and one or more background ROIs, each identified by a human observer, two linear subspaces are identified. Applying a matched subspace detector to these identified subspaces on a voxel-by-voxel basis throughout the dynamic image produces a test statistic at each voxel which on thresholding indicates potential locations of secondary or metastatic tumors. The detector is derived for three cases: using a single TAC with white noise of unknown variance, using a single TAC with known noise covariance, and detection using multiple TACs within a small ROI with known noise covariance. The noise covariance is estimated for the reconstructed image from the observed sinogram data. To evaluate the proposed method, a simulation-based receiver operating characteristic (ROC) study for dynamic PET tumor detection is designed. The detector uses a dynamic sequence of frame-by-frame 2-D reconstructions as input. We compare the performance of the subspace detectors with that of a Hotelling observer applied to a single frame image and of the Patlak method applied to the dynamic data. We also show examples of the application of each detection approach to clinical PET data from a breast cancer patient with metastatic disease.
我们描述了一种匹配子空间检测算法,以协助在动态正电子发射断层扫描(PET)图像中检测小肿瘤。该算法旨在利用表征PET示踪剂摄取的时间-活度曲线(TAC)将肿瘤与背景区分开来。TAC使用带有加性高斯噪声的线性子空间进行建模。利用由人类观察者识别的来自原发性肿瘤感兴趣区域(ROI)和一个或多个背景ROI的TAC,确定两个线性子空间。在整个动态图像上逐体素地将匹配子空间检测器应用于这些确定的子空间,会在每个体素处产生一个检验统计量,对其进行阈值处理可指示继发性或转移性肿瘤的潜在位置。该检测器针对三种情况进行了推导:使用具有未知方差白噪声的单个TAC、使用具有已知噪声协方差的单个TAC以及在具有已知噪声协方差的小ROI内使用多个TAC进行检测。从观察到的正弦图数据估计重建图像的噪声协方差。为了评估所提出的方法,设计了一项基于模拟的动态PET肿瘤检测的接收器操作特性(ROC)研究。该检测器使用逐帧二维重建的动态序列作为输入。我们将子空间检测器的性能与应用于单帧图像的霍特林观察者以及应用于动态数据的帕特拉克方法的性能进行比较。我们还展示了每种检测方法应用于一名患有转移性疾病的乳腺癌患者的临床PET数据的示例。