Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MI, 63110, USA.
Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MI, 63130, USA.
Med Phys. 2019 Apr;46(4):1798-1813. doi: 10.1002/mp.13397. Epub 2019 Feb 14.
We investigated the feasibility of a novel positron emission tomography (PET) system that provides near real-time feedback to an operator who can interactively scan a patient to optimize image quality. The system should be compact and mobile to support point-of-care (POC) molecular imaging applications. In this study, we present the key technologies required and discuss the potential benefits of such new capability.
The core of this novel PET technology includes trackable PET detectors and a fully three-dimensional, fast image reconstruction engine implemented on multiple graphics processing units (GPUs) to support dynamically changing geometry by calculating the system matrix on-the-fly using a tube-of-response approach. With near real-time image reconstruction capability, a POC-PET system may comprise a maneuverable front PET detector and a second detector panel which can be stationary or moved synchronously with the front detector such that both panels face the region-of-interest (ROI) with the detector trajectory contoured around a patient's body. We built a proof-of-concept prototype using two planar detectors each consisting of a photomultiplier tube (PMT) optically coupled to an array of 48 × 48 lutetium-yttrium oxyorthosilicate (LYSO) crystals (1.0 × 1.0 × 10.0 mm each). Only 38 × 38 crystals in each arrays can be clearly re-solved and used for coincidence detection. One detector was mounted to a robotic arm which can position it at arbitrary locations, and the other detector was mounted on a rotational stage. A cylindrical phantom (102 mm in diameter, 150 mm long) with nine spherical lesions (8:1 tumor-to-background activity concentration ratio) was imaged from 27 sampling angles. List-mode events were reconstructed to form images without or with time-of-flight (TOF) information. We conducted two Monte Carlo simulations using two POC-PET systems. The first one uses the same phantom and detector setup as our experiment, with the detector coincidence re-solving time (CRT) ranging from 100 to 700 ps full-width-at-half-maximum (FWHM). The second study simulates a body-size phantom (316 × 228 × 160 mm ) imaged by a larger POC-PET system that has 4 × 6 modules (32 × 32 LYSO crystals/module, four in axial and six in transaxial directions) in the front panel and 3 × 8 modules (16 × 16 LYSO crystals/module, three in axial and eight in transaxial directions) in the back panel. We also evaluated an interactive scanning strategy by progressively increasing the number of data sets used for image reconstruction. The updated images were analyzed based on the number of data sets and the detector CRT.
The proof-of-concept prototype re-solves most of the spherical lesions despite a limited number of coincidence events and incomplete sampling. TOF information reduces artifacts in the reconstructed images. Systems with better timing resolution exhibit improved image quality and reduced artifacts. We observed a reconstruction speed of 0.96 × 10 events/s/iteration for 600 × 600 × 224 voxel rectilinear space using four GPUs. A POC-PET system with significantly higher sensitivity can interactively image a body-size object from four angles in less than 7 min.
We have developed GPU-based fast image reconstruction capability to support a PET system with arbitrary and dynamically changing geometry. Using TOF PET detectors, we demonstrated the feasibility of a PET system that can provide timely visual feedback to an operator who can scan a patient interactively to support POC imaging applications.
我们研究了一种新型正电子发射断层扫描(PET)系统的可行性,该系统可以为操作员提供近乎实时的反馈,操作员可以与患者进行交互扫描以优化图像质量。该系统应该紧凑且移动,以支持即时护理(POC)分子成像应用。在这项研究中,我们提出了所需的关键技术,并讨论了这种新功能的潜在好处。
这种新型 PET 技术的核心包括可跟踪的 PET 探测器和完全三维、快速的图像重建引擎,该引擎在多个图形处理单元(GPU)上实现,以支持通过使用管响应方法在实时计算系统矩阵来动态改变几何形状。具有近乎实时的图像重建能力,POC-PET 系统可以包括一个可移动的前置 PET 探测器和第二个探测器面板,该探测器面板可以是静止的,也可以与前置探测器同步移动,以便两个面板都面向感兴趣区域(ROI),探测器轨迹围绕患者的身体轮廓。我们使用两个平面探测器构建了一个概念验证原型,每个探测器都由一个光电倍增管(PMT)通过光学耦合到一个 48×48 的硅酸镥(LYSO)晶体阵列(每个晶体 1.0×1.0×10.0 毫米)组成。每个阵列中只有 38×38 个晶体可以清晰地分辨出来并用于符合检测。一个探测器安装在一个机器人手臂上,可以将其定位在任意位置,另一个探测器安装在旋转台上。一个直径为 102 毫米、长 150 毫米的圆柱形体模(有九个球形病变,肿瘤与背景的活性浓度比为 8:1)从 27 个采样角度成像。使用列表模式事件进行重建,以形成没有或具有飞行时间(TOF)信息的图像。我们使用两个 POC-PET 系统进行了两次蒙特卡罗模拟。第一个使用与我们的实验相同的体模和探测器设置,探测器符合分辨率时间(CRT)范围从 100 到 700 皮秒全宽半最大值(FWHM)。第二项研究模拟了一个身体大小的体模(316×228×160 毫米),由一个更大的 POC-PET 系统成像,该系统在前板上有 4×6 个模块(每个模块有 32×32 个 LYSO 晶体,轴向 4 个,横向 6 个),在后板上有 3×8 个模块(每个模块有 16×16 个 LYSO 晶体,轴向 3 个,横向 8 个)。我们还评估了一种交互式扫描策略,通过逐步增加用于图像重建的数据量。根据数据集的数量和探测器 CRT 分析更新的图像。
尽管符合事件的数量有限且采样不完全,该概念验证原型仍能分辨出大部分球形病变。TOF 信息减少了重建图像中的伪影。具有更好时间分辨率的系统表现出改善的图像质量和减少的伪影。我们观察到使用四个 GPU 时,对于 600×600×224 个体素直线空间,重建速度为 0.96×10事件/秒/迭代。具有显著更高灵敏度的 POC-PET 系统可以在不到 7 分钟的时间内从四个角度交互式地对身体大小的物体进行成像。
我们已经开发了基于 GPU 的快速图像重建功能,以支持具有任意和动态变化几何形状的 PET 系统。使用 TOF PET 探测器,我们证明了一种 PET 系统的可行性,该系统可以为操作员提供及时的视觉反馈,操作员可以与患者进行交互扫描,以支持即时护理成像应用。