Dutta Joyita, Leahy Richard M, Li Quanzheng
Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
PLoS One. 2013 Dec 5;8(12):e81390. doi: 10.1371/journal.pone.0081390. eCollection 2013.
Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM).
NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.
To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.
The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.
动态正电子发射断层扫描(PET)可揭示放射性示踪剂的空间分布和时间动力学信息,从而实现对PET数据的定量解释。然而,由于噪声水平较高,通过参数拟合对动态PET图像进行基于模型的解释通常是一项具有挑战性的任务,因此需要进行去噪步骤。本文的目的是开发并表征一种基于非局部均值(NLM)的动态PET去噪框架。
NLM去噪通过计算体素强度的加权平均值,为在局部邻域或斑块方面与给定体素相似的体素赋予更大的权重。我们对原始NLM框架进行了三项关键修改,以使其适用于动态PET。首先,我们从典型PET采集中噪声较小的后期时间点推导相似性,以对整个时间序列进行去噪。其次,我们使用时空斑块进行稳健的相似性计算。最后,我们基于每个时空斑块上的局部方差近似,使用空间变化的平滑参数。
为了评估我们的去噪技术的性能,我们在基于Digimouse图谱的动态数字体模上进行了逼真的模拟。为了进行实验验证,我们对来自小鼠研究和肝细胞癌患者研究的[公式:见原文]PET图像进行了去噪。我们将NLM去噪的性能与其他四种去噪方法——高斯滤波、主成分分析(PCA)、HYPR以及基于空间斑块的传统NLM进行了比较。
模拟研究表明,相对于所有其他方法,使用我们的NLM技术在偏差 - 方差性能方面有显著提高。实验数据分析表明,我们的技术可使去噪后的临床前和临床动态图像生成的Patlak参数图像的对比度 - 噪声比有明显改善,这表明其在降低背景噪声方差的同时能够保留图像对比度和高强度细节的能力。