Suppr超能文献

CT灌注分析中去卷积算法之间示踪剂延迟诱导效应的差异:使用数字体模的定量评估

Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms.

作者信息

Kudo Kohsuke, Sasaki Makoto, Ogasawara Kuniaki, Terae Satoshi, Ehara Shigeru, Shirato Hiroki

机构信息

Advanced Medical Research Center, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan.

出版信息

Radiology. 2009 Apr;251(1):241-9. doi: 10.1148/radiol.2511080983. Epub 2009 Feb 3.

Abstract

Institutional review board approval and informed consent were obtained. The purpose was to evaluate the differences in tracer delay-induced effects of various deconvolution algorithms for computed tomographic (CT) perfusion imaging by using digital phantoms created from actual source data. Three methods of singular value decomposition (SVD) were evaluated. For standard SVD (sSVD), the delays induced significant errors in cerebral blood flow and mean transit time. In contrast, for block-circulant SVD (bSVD), these values remained virtually unchanged, whereas for delay-corrected SVD (dSVD), mild changes were observed. bSVD was superior to sSVD and dSVD for avoiding the tracer delay-induced effects in CT perfusion imaging.

摘要

获得了机构审查委员会的批准并取得了知情同意。目的是通过使用从实际源数据创建的数字体模,评估各种去卷积算法在计算机断层扫描(CT)灌注成像中示踪剂延迟诱导效应的差异。评估了三种奇异值分解(SVD)方法。对于标准SVD(sSVD),延迟在脑血流量和平均通过时间上引起了显著误差。相比之下,对于块循环SVD(bSVD),这些值几乎保持不变,而对于延迟校正SVD(dSVD),观察到了轻微变化。在CT灌注成像中,bSVD在避免示踪剂延迟诱导效应方面优于sSVD和dSVD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验