Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, 028-3694, Japan,
Neuroradiology. 2013 Oct;55(10):1197-203. doi: 10.1007/s00234-013-1237-7. Epub 2013 Jul 14.
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.
The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.
CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82).
Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
一种新的去卷积算法,贝叶斯估计算法,据报道可提高使用灌注计算机断层扫描创建的参数图的精度。然而,使用这种方法生成的定量值是否比使用其他软件包的优化去卷积算法生成的更准确仍不清楚。因此,我们使用数字体模比较了贝叶斯和去卷积算法的准确性。
使用贝叶斯估计算法以及在之前的交叉验证研究中作为最佳基准的两个软件包的延迟不敏感奇异值分解(SVD)算法分析了数字体模数据,其中嵌入了反映各种已知脑血流量(CBF)、脑血容量(CBV)、平均通过时间(MTT)和示踪剂延迟的浓度-时间曲线。检查了这些算法的定量值与真实值的相关性和一致性。
所有算法估计的 CBF、CBV 和 MTT 值与真实值具有很强的相关性(r=0.91-0.92、0.97-0.99 和 0.91-0.96)。此外,贝叶斯估计算法生成的所有这些参数的值与真实值具有良好的一致性[组内相关系数(ICC)=0.90、0.99 和 0.96],而 SVD 算法的 MTT 值则不太理想(ICC=0.81-0.82)。
使用数字体模进行定量分析表明,贝叶斯估计算法生成的 CBF、CBV 和 MTT 图与真实值具有很强的相关性,而 MTT 图与真实值的一致性更好,优于延迟不敏感 SVD 算法生成的 MTT 图。