Suppr超能文献

使用计算机断层扫描对心肌灌注成像的自动束硬化校正(ABHC)算法的比较。

Comparison of automated beam hardening correction (ABHC) algorithms for myocardial perfusion imaging using computed tomography.

作者信息

Levi Jacob, Wu Hao, Eck Brendan L, Fahmi Rachid, Vembar Mani, Dhanantwar Amar, Fares Anas, Bezerra Hiram G, Wilson David L

机构信息

Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Med Phys. 2021 Jan;48(1):287-299. doi: 10.1002/mp.14599. Epub 2020 Dec 7.

Abstract

PURPOSE

Myocardial perfusion imaging using computed tomography (MPI-CT) and coronary CT angiography (CTA) have the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary angiography. However, beam hardening can prevent accurate blood flow estimation in dynamic MPI-CT and can create artifacts that resemble flow deficits in single-shot MPI-CT. In this work, we compare four automatic beam hardening correction algorithms (ABHCs) applied to CT images, for their ability to produce accurate single images of contrast and accurate MPI flow maps using images from conventional CT systems, without energy sensitivity.

METHODS

Previously, we reported a method, herein called ABHC-1, where we iteratively optimized a cost function sensitive to beam hardening artifacts in MPI-CT images and used a low order polynomial correction on projections of segmentation-processed CT images. Here, we report results from two new algorithms with higher order polynomial corrections, ABHC-2 and ABHC-3 (with three and seven free parameters, respectively), having potentially better correction but likely reduced estimability. Additionally, we compared results to an algorithm reported by others in the literature (ABHC-NH). Comparisons were made on a digital static phantom with simulated water, bone, and iodine regions; on a digital dynamic anthropomorphic phantom, with simulated blood flow; and on preclinical porcine experiments. We obtained CT images on a prototype spectral detector CT (Philips Healthcare) scanner that provided both conventional and virtual keV images, allowing us to quantitatively compare corrected CT images to virtual keV images. To test these methods' parameter optimization sensitivity to noise, we evaluated results on images obtained using different mAs.

RESULTS

In images of the static phantom, ABHC-2 reduced beam hardening artifacts better than our previous ABHC-1 algorithm, giving artifacts smaller than 1.8 HU, even in the presence of high noise which should affect parameter optimization. Taken together, the quality of static phantom results ordered ABHC-2> ABHC-3> ABHC-1>> ABHC-NH. In an anthropomorphic MPI-CT simulator with homogeneous myocardial blood flow of 100 ml⋅min ⋅100 g , blood flow estimation results were 122 ± 24 (FBP), 135 ± 24 (ABHC-NH), 104 ± 14 (ABHC-1), 100 ± 12 (ABHC-2), and 108 ± 18 (ABHC-3) ml⋅min ⋅100 g , showing ABHC-2 as a clear winner. Visual and quantitative evaluations showed much improved homogeneity of myocardial flow with ABHC-2, nearly eliminating substantial artifacts in uncorrected flow maps which could be misconstrued as flow deficits. ABHC-2 performed universally better than ABHC-1, ABHC-3, and ABHC-NH in simulations with different acquisitions (varying noise and kVp values). In the presence of a simulated flow deficit, all ABHC methods retained the flow deficit, and ABHC-2 gave the most accurate flow ratio and homogeneity. ABHC-3 corrected phantom flow values were slightly better than ABHC-2, in noiseless images, suggesting that reduced quality in noisy images was due to reduced estimability. In an experiment with a pig expected to have uniform flow, ABHC-2 applied to conventional images improved flow maps to compare favorably to those from 70keV images.

CONCLUSION

The automated algorithm can be used with different parametric BH correction models. ABHC-2 improved MPI-CT blood flow estimation as compared to other approaches and was robust to noisy images. In simulation and preclinical experiments, ABHC-2 gave results approaching gold standard 70 keV measurements.

摘要

目的

使用计算机断层扫描的心肌灌注成像(MPI-CT)和冠状动脉CT血管造影(CTA)有可能使CT成为侵入性冠状动脉造影理想的无创成像守门人检查。然而,束硬化会妨碍动态MPI-CT中血流的准确估计,并可能产生类似于单次MPI-CT中血流灌注缺损的伪影。在这项工作中,我们比较了应用于CT图像的四种自动束硬化校正算法(ABHC),以评估它们使用传统CT系统的图像生成准确的对比剂单图像和准确的MPI血流图的能力,这些传统CT系统不具备能量敏感性。

方法

此前,我们报道了一种方法,在此称为ABHC-1,我们在该方法中迭代优化了一个对MPI-CT图像中的束硬化伪影敏感的代价函数,并对分割处理后的CT图像的投影使用低阶多项式校正。在此,我们报告了两种具有高阶多项式校正的新算法ABHC-2和ABHC-3(分别具有三个和七个自由参数)的结果,它们可能具有更好的校正效果,但估计性可能降低。此外,我们将结果与文献中其他人报道的一种算法(ABHC-NH)进行了比较。在具有模拟水、骨和碘区域的数字静态体模上进行了比较;在具有模拟血流的数字动态拟人化体模上进行了比较;并在临床前猪实验中进行了比较。我们在一台原型光谱探测器CT(飞利浦医疗保健公司)扫描仪上获得了CT图像,该扫描仪提供了传统和虚拟keV图像,使我们能够将校正后的CT图像与虚拟keV图像进行定量比较。为了测试这些方法的参数优化对噪声的敏感性,我们评估了使用不同mAs获得的图像的结果。

结果

在静态体模的图像中,ABHC-2比我们之前的ABHC-1算法更好地减少了束硬化伪影,即使在存在高噪声(这会影响参数优化)的情况下,伪影也小于1.8 HU。总体而言,静态体模结果的质量排序为ABHC-2>ABHC-3>ABHC-1>>ABHC-NH。在心肌血流均匀为100 ml·min·100 g的拟人化MPI-CT模拟器中,血流估计结果为122±24(FBP)、135±24(ABHC-NH)、104±14(ABHC-1)、100±12(ABHC-2)和108±18(ABHC-3)ml·min·100 g,表明ABHC-2明显胜出。视觉和定量评估表明,ABHC-2使心肌血流的均匀性有了很大改善,几乎消除了未校正血流图中可能被误解为血流灌注缺损的大量伪影。在不同采集(不同噪声和kVp值)的模拟中,ABHC-2普遍比ABHC-1、ABHC-3和ABHC-NH表现更好。在存在模拟血流灌注缺损的情况下,所有ABHC方法都保留了血流灌注缺损,并且ABHC-2给出了最准确的血流比值和均匀性。在无噪声图像中,ABHC-3校正后的体模血流值略优于ABHC-2,这表明噪声图像中质量下降是由于估计性降低。在一头预期血流均匀的猪的实验中,应用于传统图像的ABHC-2改善了血流图,与70keV图像的血流图相比具有优势。

结论

自动算法可与不同的参数化束硬化校正模型一起使用。与其他方法相比,ABHC-2改善了MPI-CT血流估计,并且对噪声图像具有鲁棒性。在模拟和临床前实验中,ABHC-2给出的结果接近金标准70keV测量结果。

相似文献

2
Calibration-free beam hardening correction for myocardial perfusion imaging using CT.
Med Phys. 2019 Apr;46(4):1648-1662. doi: 10.1002/mp.13402. Epub 2019 Mar 7.
3
Calibration Free Beam Hardening Correction for Cardiac CT Perfusion Imaging.
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9784. doi: 10.1117/12.2216623. Epub 2016 Mar 21.
5
Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.
Phys Med Biol. 2016 Mar 21;61(6):2407-31. doi: 10.1088/0031-9155/61/6/2407. Epub 2016 Mar 4.
7
Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
Med Phys. 2022 May;49(5):3021-3040. doi: 10.1002/mp.15621. Epub 2022 Apr 5.

本文引用的文献

1
Dynamic Myocardial Perfusion in a Porcine Balloon-induced Ischemia Model using a Prototype Spectral Detector CT.
Proc SPIE Int Soc Opt Eng. 2015 Feb;9417. doi: 10.1117/12.2081547. Epub 2015 Mar 19.
2
SLICR super-voxel algorithm for fast, robust quantification of myocardial blood flow by dynamic computed tomography myocardial perfusion imaging.
J Med Imaging (Bellingham). 2019 Oct;6(4):046001. doi: 10.1117/1.JMI.6.4.046001. Epub 2019 Nov 6.
4
Calibration-free beam hardening correction for myocardial perfusion imaging using CT.
Med Phys. 2019 Apr;46(4):1648-1662. doi: 10.1002/mp.13402. Epub 2019 Mar 7.
6
Integrating CT Myocardial Perfusion and CT-FFR in the Work-Up of Coronary Artery Disease.
JACC Cardiovasc Imaging. 2017 Jul;10(7):760-770. doi: 10.1016/j.jcmg.2016.09.028. Epub 2017 Jan 18.
7
Functional Assessment of Coronary Artery Disease Using Whole-Heart Dynamic Computed Tomographic Perfusion.
Circ Cardiovasc Imaging. 2016 Dec;9(12). doi: 10.1161/CIRCIMAGING.116.005325.
8
Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis.
J Cardiovasc Comput Tomogr. 2016 Nov-Dec;10(6):450-457. doi: 10.1016/j.jcct.2016.09.003. Epub 2016 Oct 15.
9
Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.
Phys Med Biol. 2016 Mar 21;61(6):2407-31. doi: 10.1088/0031-9155/61/6/2407. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验