Akiyama M, Hatanaka M, Ohta Y, Ueda K, Yanai A, Uehara Y, Tanabe K, Tsuru M, Miyazaki M, Saeki S, Saito T, Shinoda K, Oka Y, Tanizawa Y
Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan.
Diabetologia. 2009 Apr;52(4):653-63. doi: 10.1007/s00125-009-1270-6. Epub 2009 Feb 4.
AIMS/HYPOTHESIS: The WFS1 gene encodes an endoplasmic reticulum (ER) membrane-embedded protein called Wolfram syndrome 1 protein, homozygous mutations of which cause selective beta cell loss in humans. The function(s) of this protein and the mechanism by which the mutations of this gene cause beta cell death are still not fully understood. We hypothesised that increased insulin demand as a result of obesity/insulin resistance causes ER stress in pancreatic beta cells, thereby promoting beta cell death.
We studied the effect of breeding Wfs1 ( -/- ) mice on a C57BL/6J background with mild obesity and insulin resistance, by introducing the agouti lethal yellow mutation (A ( y ) /a). We also treated the mice with pioglitazone.
Wfs1 ( -/- ) mice bred on a C57BL/6J background rarely develop overt diabetes by 24 weeks of age, showing only mild beta cell loss. However, Wfs1 ( -/- ) A ( y ) /a mice developed selective beta cell loss and severe insulin-deficient diabetes as early as 8 weeks. This beta cell loss was due to apoptosis. In Wfs1 ( +/+ ) A ( y ) /a islets, levels of ER chaperone immunoglobulin-binding protein (BiP)/78 kDa glucose-regulated protein (GRP78) and phosphorylation of eukaryotic translation initiation factor 2, subunit alpha (eIF2alpha) apparently increased. Levels of both were further increased in Wfs1 ( -/- ) A ( y ) /a murine islets. Electron micrography revealed markedly dilated ERs in Wfs1 (-/-) A ( y ) /a murine beta cells. Interestingly, pioglitazone treatment protected beta cells from apoptosis and almost completely prevented diabetes development.
CONCLUSIONS/INTERPRETATION: Wfs1-deficient beta cells are susceptible to ER stress. Increased insulin demand prompts apoptosis in such cells in vivo. Pioglitazone, remarkably, suppresses this process and prevents diabetes. As common WFS1 gene variants have recently been shown to confer a risk of type 2 diabetes, our findings may be relevant to the gradual but progressive loss of beta cells in type 2 diabetes.
目的/假设:WFS1基因编码一种名为沃尔弗勒姆综合征1蛋白的内质网(ER)膜嵌入蛋白,该蛋白的纯合突变会导致人类选择性β细胞丢失。这种蛋白的功能以及该基因突变导致β细胞死亡的机制仍未完全明确。我们推测,肥胖/胰岛素抵抗导致的胰岛素需求增加会引起胰腺β细胞内质网应激,从而促进β细胞死亡。
我们通过引入刺豚鼠致死性黄色突变(A(y)/a),研究了在C57BL/6J背景下繁殖的Wfs1(-/-)小鼠与轻度肥胖和胰岛素抵抗的关系。我们还用吡格列酮对小鼠进行了治疗。
在C57BL/6J背景下繁殖的Wfs1(-/-)小鼠在24周龄时很少发生明显的糖尿病,仅表现出轻度β细胞丢失。然而,Wfs1(-/-)A(y)/a小鼠早在8周时就出现了选择性β细胞丢失和严重的胰岛素缺乏性糖尿病。这种β细胞丢失是由细胞凋亡引起的。在Wfs1(+/+)A(y)/a胰岛中,内质网伴侣免疫球蛋白结合蛋白(BiP)/78 kDa葡萄糖调节蛋白(GRP78)水平以及真核翻译起始因子2α亚基(eIF2α)的磷酸化水平明显升高。在Wfs1(-/-)A(y)/a小鼠胰岛中,两者水平进一步升高。电子显微镜检查显示,Wfs1(-/-)A(y)/a小鼠β细胞中的内质网明显扩张。有趣的是,吡格列酮治疗可保护β细胞免于凋亡,并几乎完全预防糖尿病的发生。
结论/解读:缺乏Wfs1的β细胞对内质网应激敏感。胰岛素需求增加会促使体内此类细胞发生凋亡。值得注意的是,吡格列酮可抑制这一过程并预防糖尿病。由于最近已表明常见的WFS1基因变异会增加2型糖尿病的风险,我们的研究结果可能与2型糖尿病中β细胞逐渐但渐进性的丢失有关。