Suppr超能文献

轴突钠通道带塑造视网膜神经节细胞对电刺激的反应。

Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells.

作者信息

Fried Shelley I, Lasker Aaron C W, Desai Neal J, Eddington Donald K, Rizzo Joseph F

机构信息

Center for Innovative Visual Rehabilitation, Boston, VA Healthcare System, Room 8B-74, Boston, MA 02130, USA.

出版信息

J Neurophysiol. 2009 Apr;101(4):1972-87. doi: 10.1152/jn.91081.2008. Epub 2009 Feb 4.

Abstract

Electric stimulation of the retina reliably elicits light percepts in patients blinded by outer retinal diseases. However, individual percepts are highly variable and do not readily assemble into more complex visual images. As a result, the quality of visual information conveyed to patients has been quite limited. To develop more effective stimulation methods that will lead to improved psychophysical outcomes, we are studying how retinal neurons respond to electric stimulation. The situation in the retina is analogous to other neural prosthetic applications in which a better understanding of the underlying neural response may lead to improved clinical outcomes. Here, we determined which element in retinal ganglion cells has the lowest threshold for initiating action potentials. Previous studies suggest multiple possibilities, although all were within the soma/proximal axon region. To determine the actual site, we measured thresholds in a dense two-dimensional grid around the soma/proximal axon region of rabbit ganglion cells in the flat mount preparation. In directionally selective (DS) ganglion cells, the lowest thresholds were found along a small section of the axon, about 40 microm from the soma. Immunochemical staining revealed a dense band of voltage-gated sodium channels centered at the same location, suggesting that thresholds are lowest when the stimulating electrode is closest to the sodium-channel band. The size and location of the low-threshold region was consistent within DS cells, but varied for other ganglion cell types. Analogously, the length and location of sodium channel bands also varied by cell type. Consistent with the differences in band properties, we found that the absolute (lowest) thresholds were also different for different cell types. Taken together, our results suggest that the sodium-channel band is the site that is most responsive to electric stimulation and that differences in the bands underlie the threshold differences we observed.

摘要

对因外层视网膜疾病而失明的患者进行视网膜电刺激可可靠地引发光感。然而,个体的光感差异很大,且不易组合成更复杂的视觉图像。因此,传递给患者的视觉信息质量相当有限。为了开发能带来更好心理物理学结果的更有效刺激方法,我们正在研究视网膜神经元对电刺激的反应。视网膜的情况类似于其他神经假体应用,在这些应用中,对潜在神经反应的更好理解可能会带来更好的临床结果。在这里,我们确定了视网膜神经节细胞中哪个部位引发动作电位的阈值最低。先前的研究提出了多种可能性,尽管所有可能性都在胞体/近端轴突区域内。为了确定实际部位,我们在兔神经节细胞扁平标本的胞体/近端轴突区域周围的密集二维网格中测量了阈值。在方向选择性(DS)神经节细胞中,最低阈值出现在轴突的一小段上,距离胞体约40微米。免疫化学染色显示,电压门控钠通道的密集带集中在同一位置,这表明当刺激电极最接近钠通道带时阈值最低。低阈值区域的大小和位置在DS细胞内是一致的,但在其他神经节细胞类型中有所不同。类似地,钠通道带的长度和位置也因细胞类型而异。与带特性的差异一致,我们发现不同细胞类型的绝对(最低)阈值也不同。综上所述,我们的结果表明,钠通道带是对电刺激最敏感的部位,并且带的差异是我们观察到的阈值差异的基础。

相似文献

1
Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells.
J Neurophysiol. 2009 Apr;101(4):1972-87. doi: 10.1152/jn.91081.2008. Epub 2009 Feb 4.
2
Influence of the sodium channel band on retinal ganglion cell excitation during electric stimulation--a modeling study.
Neuroscience. 2014 Apr 25;266:162-77. doi: 10.1016/j.neuroscience.2014.01.067. Epub 2014 Feb 19.
3
The sodium channel band shapes the response to electric stimulation in retinal ganglion cells.
J Neural Eng. 2011 Jun;8(3):036022. doi: 10.1088/1741-2560/8/3/036022. Epub 2011 May 11.
4
Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.
Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3533-43. doi: 10.1167/iovs.02-1041.
5
Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.
J Neurophysiol. 2009 Nov;102(5):2982-93. doi: 10.1152/jn.00545.2009. Epub 2009 Sep 9.
6
Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice.
Vis Neurosci. 2011 Mar;28(2):145-54. doi: 10.1017/S0952523810000489.
7
Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell.
J Neurophysiol. 2012 Apr;107(7):1795-807. doi: 10.1152/jn.00924.2011. Epub 2011 Dec 28.
8
Functional distribution of three types of Na+ channel on soma and processes of dorsal horn neurones of rat spinal cord.
J Physiol. 1997 Sep 1;503 ( Pt 2)(Pt 2):371-85. doi: 10.1111/j.1469-7793.1997.371bh.x.
9
Impulse encoding across the dendritic morphologies of retinal ganglion cells.
J Neurophysiol. 1999 Apr;81(4):1685-98. doi: 10.1152/jn.1999.81.4.1685.

引用本文的文献

1
Understanding responses to multi-electrode epiretinal stimulation using a biophysical model.
J Neural Eng. 2025 Jan 23;22(1). doi: 10.1088/1741-2552/ada1fe.
2
Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation.
Device. 2024 Apr 19;2(4). doi: 10.1016/j.device.2024.100290. Epub 2024 Mar 5.
3
Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells.
Front Cell Neurosci. 2024 Jan 10;17:1337768. doi: 10.3389/fncel.2023.1337768. eCollection 2023.
4
Retinal ganglion cells undergo cell type-specific functional changes in a computational model of cone-mediated retinal degeneration.
Front Neurosci. 2023 May 18;17:1147729. doi: 10.3389/fnins.2023.1147729. eCollection 2023.
5
Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells.
J Neurosci. 2023 Jun 28;43(26):4808-4820. doi: 10.1523/JNEUROSCI.1023-22.2023. Epub 2023 Jun 2.
6
Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects.
J Neural Eng. 2023 Mar 13;20(2):026011. doi: 10.1088/1741-2552/acbf79.
7
Electronic Retinal Prostheses.
Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. doi: 10.1101/cshperspect.a041525.
9
Factors affecting two-point discrimination in Argus II patients.
Front Neurosci. 2022 Aug 24;16:901337. doi: 10.3389/fnins.2022.901337. eCollection 2022.

本文引用的文献

1
Voltage-gated sodium channels in neurological disorders.
CNS Neurol Disord Drug Targets. 2008 Apr;7(2):144-58. doi: 10.2174/187152708784083830.
2
High-resolution electrical stimulation of primate retina for epiretinal implant design.
J Neurosci. 2008 Apr 23;28(17):4446-56. doi: 10.1523/JNEUROSCI.5138-07.2008.
3
Na(+) channel blockers for the treatment of pain: context is everything, almost.
Exp Neurol. 2008 Mar;210(1):1-6. doi: 10.1016/j.expneurol.2007.12.001. Epub 2007 Dec 8.
4
Action potential generation requires a high sodium channel density in the axon initial segment.
Nat Neurosci. 2008 Feb;11(2):178-86. doi: 10.1038/nn2040. Epub 2008 Jan 20.
5
From genes to pain: Na v 1.7 and human pain disorders.
Trends Neurosci. 2007 Nov;30(11):555-63. doi: 10.1016/j.tins.2007.08.004. Epub 2007 Oct 22.
7
Action potential initiation and propagation in CA3 pyramidal axons.
J Neurophysiol. 2007 May;97(5):3460-72. doi: 10.1152/jn.01288.2006. Epub 2007 Feb 21.
8
Organotypic culture of physiologically functional adult mammalian retinas.
PLoS One. 2007 Feb 21;2(2):e221. doi: 10.1371/journal.pone.0000221.
9
Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina.
J Neurosci. 2006 Dec 20;26(51):13250-63. doi: 10.1523/JNEUROSCI.1991-06.2006.
10
Axonal site of spike initiation enhances auditory coincidence detection.
Nature. 2006 Dec 21;444(7122):1069-72. doi: 10.1038/nature05347. Epub 2006 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验