Guetg Nicole, Seddik Riad, Vigot Réjan, Turecek Rostislav, Gassmann Martin, Vogt Kaspar E, Bräuner-Osborne Hans, Shigemoto Ryuichi, Kretz Oliver, Frotscher Michael, Kulik Akos, Bettler Bernhard
Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
J Neurosci. 2009 Feb 4;29(5):1414-23. doi: 10.1523/JNEUROSCI.3697-08.2009.
GABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. Accordingly, it was found that GABA(B(1a,2)) receptors are more efficient than GABA(B(1b,2)) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen. Here, we used a combination of genetic, ultrastructural and electrophysiological approaches to analyze to what extent GABA(B(1a,2)) and GABA(B(1b,2)) receptors inhibit glutamate release in response to physiological activation. We first show that at hippocampal mossy fiber (MF)-CA3 pyramidal neuron synapses more GABA(B1a) than GABA(B1b) protein is present at presynaptic sites, consistent with the findings at other glutamatergic synapses. In the presence of baclofen at concentrations >or=1 microm, both GABA(B(1a,2)) and GABA(B(1b,2)) receptors contribute to presynaptic inhibition of glutamate release. However, at lower concentrations of baclofen, selectively GABA(B(1a,2)) receptors contribute to presynaptic inhibition. Remarkably, exclusively GABA(B(1a,2)) receptors inhibit glutamate release in response to synaptically released GABA. Specifically, we demonstrate that selectively GABA(B(1a,2)) receptors mediate heterosynaptic depression of MF transmission, a physiological phenomenon involving transsynaptic inhibition of glutamate release via presynaptic GABA(B) receptors. Our data demonstrate that the difference in GABA(B1a) and GABA(B1b) protein levels at MF terminals is sufficient to produce a strictly GABA(B1a)-specific effect under physiological conditions. This consolidates that the differential subcellular localization of the GABA(B1a) and GABA(B1b) proteins is of regulatory relevance.
GABA(B)受体亚型基于亚基异构体GABA(B1a)和GABA(B1b),它们与GABA(B2)亚基结合形成药理学上难以区分的GABA(B(1a,2))和GABA(B(1b,2))受体。对选择性表达GABA(B1a)或GABA(B1b)亚基的小鼠的研究表明,在谷氨酸能终末,GABA(B(1a,2))受体比GABA(B(1b,2))受体更为丰富。因此,研究发现,当通过外源性应用激动剂巴氯芬使其最大程度激活时,GABA(B(1a,2))受体在抑制谷氨酸释放方面比GABA(B(1b,2))受体更有效。在此,我们结合遗传学、超微结构和电生理学方法,来分析GABA(B(1a,2))和GABA(B(1b,2))受体在生理激活时对谷氨酸释放的抑制程度。我们首先表明,在海马苔藓纤维(MF)-CA3锥体神经元突触处,突触前位点存在的GABA(B1a)蛋白比GABA(B1b)蛋白更多,这与在其他谷氨酸能突触处的发现一致。在巴氯芬浓度≥1微摩尔的情况下,GABA(B(1a,2))和GABA(B(1b,2))受体都对谷氨酸释放的突触前抑制起作用。然而,在较低浓度的巴氯芬时,选择性地GABA(B(1a,2))受体对突触前抑制起作用。值得注意的是,只有GABA(B(1a,2))受体能响应突触释放的GABA而抑制谷氨酸释放。具体而言,我们证明选择性地GABA(B(1a,2))受体介导MF传递的异突触抑制,这是一种涉及通过突触前GABA(B)受体对谷氨酸释放进行跨突触抑制的生理现象。我们的数据表明,MF终末处GABA(B1a)和GABA(B1b)蛋白水平的差异足以在生理条件下产生严格的GABA(B1a)特异性效应。这巩固了GABA(B1a)和GABA(B1b)蛋白在亚细胞水平的差异定位具有调节相关性这一观点。