Suppr超能文献

分子内伴侣:N 端在构象选择和动力学控制中的作用。

Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control.

作者信息

Tsai Chung-Jung, Ma Buyong, Nussinov Ruth

机构信息

Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.

出版信息

Phys Biol. 2009 Feb 4;6(1):013001. doi: 10.1088/1478-3975/6/1/013001.

Abstract

The vast majority of the proteins in nature are under thermodynamic control, consistent with the universally accepted notion that proteins exist in their thermodynamically most stable state. Yet, recently a number of examples of proteins whose fold is under kinetic control have come to light. Their functions and environments vary. The first among these are some proteases, discovered in the early 1990s. There, an N-terminal proregion is self-cleaved after the protein folded, leaving the remainder of the chain in a kinetically trapped state. A related scenario was observed for microcin J25, an antibacterial peptide. This peptide presents a trapped covalently knotted conformation. The third and the most recently discovered case is the multidrug-resistant transporter protein, P-glycoprotein. There, a synonymous 'silent' mutation leads to ribosome stalling with a consequent altered kinetically trapped state. Here we argue that in all three examples, the N-terminal plays the role of an intra-molecular chaperone, that is, the N-terminal conformation selects among all competing local conformations of a downstream segment. By providing a pattern, the N-terminal chaperone segment assists the protein folding process. If the N-terminal is subsequently cleaved, the protein can be under kinetic control, since it is trapped in a thermodynamically less-stable state.

摘要

自然界中的绝大多数蛋白质都处于热力学控制之下,这与蛋白质以其热力学上最稳定的状态存在这一普遍接受的观点相一致。然而,最近发现了一些折叠受动力学控制的蛋白质实例。它们的功能和所处环境各不相同。其中最早发现的是一些蛋白酶,于20世纪90年代初被发现。在那里,一个N端前肽在蛋白质折叠后自我切割,使链的其余部分处于动力学捕获状态。对于抗菌肽微菌素J25也观察到了类似情况。这种肽呈现出一种捕获的共价缠结构象。第三个也是最近发现的例子是多药耐药转运蛋白P-糖蛋白。在那里,一个同义的“沉默”突变导致核糖体停滞,从而改变了动力学捕获状态。在这里我们认为,在所有这三个例子中,N端起着分子内伴侣的作用,也就是说,N端构象在下游片段的所有竞争局部构象中进行选择。通过提供一种模式,N端伴侣片段协助蛋白质折叠过程。如果N端随后被切割,蛋白质可能会处于动力学控制之下,因为它被困在热力学上较不稳定的状态。

相似文献

1
Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control.
Phys Biol. 2009 Feb 4;6(1):013001. doi: 10.1088/1478-3975/6/1/013001.
2
Binding and folding: in search of intramolecular chaperone-like building block fragments.
Protein Eng. 2000 Sep;13(9):617-27. doi: 10.1093/protein/13.9.617.
3
Chaperoning Anfinsen: the steric foldases.
Mol Microbiol. 2007 May;64(4):917-22. doi: 10.1111/j.1365-2958.2007.05718.x.
4
Protein folding by NMR.
Prog Nucl Magn Reson Spectrosc. 2017 May;100:52-77. doi: 10.1016/j.pnmrs.2016.10.002. Epub 2016 Nov 9.
5
Modeling protein folding in vivo.
Biol Direct. 2018 Jul 6;13(1):13. doi: 10.1186/s13062-018-0217-6.
6
Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
Protein Sci. 2020 Feb;29(2):360-377. doi: 10.1002/pro.3795. Epub 2019 Dec 23.
8
The intramolecular chaperone-mediated protein folding.
Curr Opin Struct Biol. 2008 Dec;18(6):765-70. doi: 10.1016/j.sbi.2008.10.005. Epub 2008 Nov 13.
9
Chaperone-Bound Clients: The Importance of Being Dynamic.
Trends Biochem Sci. 2019 Jun;44(6):517-527. doi: 10.1016/j.tibs.2018.12.005. Epub 2019 Jan 2.
10
Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Biochemistry. 2004 Nov 2;43(43):13775-86. doi: 10.1021/bi048614u.

引用本文的文献

1
Understanding activity-stability tradeoffs in biocatalysts by enzyme proximity sequencing.
Nat Commun. 2024 Feb 28;15(1):1807. doi: 10.1038/s41467-024-45630-3.
2
Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches.
J Mol Model. 2012 Jul;18(7):2971-9. doi: 10.1007/s00894-011-1320-0. Epub 2011 Dec 7.
3
AS-48 bacteriocin: close to perfection.
Cell Mol Life Sci. 2011 Sep;68(17):2845-57. doi: 10.1007/s00018-011-0724-4. Epub 2011 May 17.
4
Follow the leader: the use of leader peptides to guide natural product biosynthesis.
Nat Chem Biol. 2010 Jan;6(1):9-18. doi: 10.1038/nchembio.286.

本文引用的文献

1
Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima.
J Mol Biol. 2008 Nov 7;383(2):281-91. doi: 10.1016/j.jmb.2008.08.012. Epub 2008 Aug 12.
2
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.
3
Biochemistry. How do proteins interact?
Science. 2008 Jun 13;320(5882):1429-30. doi: 10.1126/science.1158818.
4
Foldon-guided self-assembly of ultra-stable protein fibers.
Protein Sci. 2008 Sep;17(9):1475-85. doi: 10.1110/ps.036111.108. Epub 2008 Jun 5.
6
Protein folding: independent unrelated pathways or predetermined pathway with optional errors.
Proc Natl Acad Sci U S A. 2008 May 20;105(20):7182-7. doi: 10.1073/pnas.0801864105. Epub 2008 May 14.
7
Protein folding and misfolding: mechanism and principles.
Q Rev Biophys. 2007 Nov;40(4):287-326. doi: 10.1017/S0033583508004654. Epub 2008 Apr 14.
8
Monitoring protein conformation along the pathway of chaperonin-assisted folding.
Cell. 2008 Apr 4;133(1):142-53. doi: 10.1016/j.cell.2008.01.048.
9
Rattling the cage: computational models of chaperonin-mediated protein folding.
Curr Opin Struct Biol. 2008 Apr;18(2):163-9. doi: 10.1016/j.sbi.2007.12.013. Epub 2008 Mar 4.
10
Chaperone machines in action.
Curr Opin Struct Biol. 2008 Feb;18(1):35-42. doi: 10.1016/j.sbi.2007.11.006. Epub 2008 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验