Suppr超能文献

麻疹病毒的反向遗传学及由此产生的多价重组疫苗:重组麻疹病毒的应用

Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

作者信息

Billeter M A, Naim H Y, Udem S A

机构信息

University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

出版信息

Curr Top Microbiol Immunol. 2009;329:129-62. doi: 10.1007/978-3-540-70523-9_7.

Abstract

An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

摘要

本文概述了实现RNA病毒反向遗传学的技术发展,即从cDNA拯救病毒,重点介绍了非节段性负链RNA病毒(单股负链RNA病毒目),以麻疹病毒(MV)为例。这些技术主要实现了定点诱变,有助于深入了解这些病毒生物学的各个方面。同时,插入外源编码序列的目的包括:(a)通过标记基因表达在体内定位病毒复制;(b)研发针对麻疹和其他病原体的多价候选疫苗;(c)构建候选溶瘤病毒。这些病毒作为载体的应用在实验上得到了鼓励,原因在于重组体具有明显的遗传稳定性,这对于RNA病毒来说出乎意料,而且可插入的遗传物质负载量很高,超过6 kb。与被提议作为载体的DNA病毒相比,该载体基因组较小,减毒MV作为疫苗具有广泛的临床经验,安全性和有效性记录良好,且每剂疫苗的生产成本较低,这些已知优势因此得到了有力补充。

相似文献

2
Measles virus.
Hum Vaccin Immunother. 2015;11(1):21-6. doi: 10.4161/hv.34298. Epub 2014 Nov 1.
3
Attenuated measles virus as a vaccine vector.
Vaccine. 2007 Apr 20;25(16):2974-83. doi: 10.1016/j.vaccine.2007.01.064. Epub 2007 Feb 2.
4
Vaccine platform recombinant measles virus.
Virus Genes. 2017 Oct;53(5):733-740. doi: 10.1007/s11262-017-1486-3. Epub 2017 Jul 14.
5
Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression.
J Virol. 2016 May 12;90(11):5270-5279. doi: 10.1128/JVI.00348-16. Print 2016 Jun 1.
6
Live attenuated measles vaccine as a potential multivalent pediatric vaccination vector.
Viral Immunol. 2005;18(2):317-26. doi: 10.1089/vim.2005.18.317.
8
An immune competent mouse model for the characterization of recombinant measles vaccines.
Hum Vaccin Immunother. 2015;11(1):83-90. doi: 10.4161/hv.34358. Epub 2014 Nov 1.
9
[Measles vaccine].
Uirusu. 2009 Dec;59(2):257-66. doi: 10.2222/jsv.59.257.
10
Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells.
Viruses. 2021 Aug 30;13(9):1723. doi: 10.3390/v13091723.

引用本文的文献

1
Applying Reverse Genetics to Study Measles Virus Interactions with the Host.
Methods Mol Biol. 2024;2808:89-103. doi: 10.1007/978-1-0716-3870-5_7.
2
Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases.
Signal Transduct Target Ther. 2023 Apr 7;8(1):149. doi: 10.1038/s41392-023-01408-5.
3
Viral Vectors in Gene Therapy: Where Do We Stand in 2023?
Viruses. 2023 Mar 7;15(3):698. doi: 10.3390/v15030698.
6
Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform.
Nano Res. 2022;15(3):2196-2225. doi: 10.1007/s12274-021-3832-y. Epub 2021 Oct 9.
7
Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells.
Viruses. 2021 Aug 30;13(9):1723. doi: 10.3390/v13091723.
8
Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2.
Vaccines (Basel). 2021 May 3;9(5):453. doi: 10.3390/vaccines9050453.
10
Measles Vaccines Designed for Enhanced CD8 T Cell Activation.
Viruses. 2020 Feb 21;12(2):242. doi: 10.3390/v12020242.

本文引用的文献

2
Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses.
Vaccine. 2008 Apr 16;26(17):2164-74. doi: 10.1016/j.vaccine.2008.01.057. Epub 2008 Feb 22.
4
Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine.
Cancer Res. 2007 Nov 15;67(22):10939-47. doi: 10.1158/0008-5472.CAN-07-1252.
7
Recombinant vector derived from live attenuated measles virus: potential for flavivirus vaccines.
Comp Immunol Microbiol Infect Dis. 2008 Mar;31(2-3):271-91. doi: 10.1016/j.cimid.2007.07.012. Epub 2007 Sep 14.
8
Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus.
Cancer Res. 2007 Sep 1;67(17):8285-92. doi: 10.1158/0008-5472.CAN-07-1025.
10
An immunocompetent murine model for oncolysis with an armed and targeted measles virus.
Mol Ther. 2007 Nov;15(11):1991-7. doi: 10.1038/sj.mt.6300291. Epub 2007 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验